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Near-horizon geometry and isolated horizons

Non-expanding horizon models a black hole, that has constant area. It is a null hypersurface generated by nowhere-vanishing vector ℓ , with degenerate
metric tensor q and covariant derivative D induced by its space-time counterpart. In particular it can be Killing horizon. We assume, that expansion of ℓ
vanishes.

�ow . . . isolated
�ow of matter

and energy

Isolated horizon is a non-expanding horizon, whose geometry is time-
independent, that is

[D, Lℓ] = 0. (1)
It models black hole with no mass-energy transfer through its surface. We can
de�ne the rotation one-from ωa on isolated horizon, together with surface
gravity κ:

Daℓ
b = ωaℓ

b, κ = ωaℓ
a. (2)

When surface gravity vanishes, the isolated horizon is called extremal.

Near-horizon geometry equations

Isolated horizon is topologically a productR × S, where a spacelike (indices
A,B,C ,. . . ) section S is a compact manifold. Einstein vacuum equations
withΛ induce the following constraints on geometry of our section:

∇(AωB) + ωAωB −
1
2
R(S)
AB
+ Λ

2
qAB = 0. (3)

We call these the Near-horizon geometry (NHG) equations. One can
prove, that for genus(S) ≠ 0 the solution is trivial

ω = 0,
1
2
R = Λ, (4)

therefore we will be interested in the case S � S2.

Solution

Via Hodge decomposition, we can express rotation one-form as
ω = ★dU + d log B, (5)

where scalar functions U and B are unique up to additive and
multiplicative constants U0 and B0 respectively. It lets us solve NHG
equations, yielding

B2 = B2
0
[
Ω2 + x2]

U = arc tg
( x
Ω

)
+ U0

where Ω2 =
1 − 1

3Λρ
2

1 − Λρ2 (6)

together with

P (x) = (x2 − 1)
Λρ2 (

Λρ2 − x2(Λρ2 − 1) − 5
)
+ 6

Λρ2 + 3x2(Λρ2 − 1) − 3
. (7)

Positivity of metric andΩ2 restricts possible values of cosmological
constant to

Λρ2 ∈] − ∞, 1[. (8)
Solution forΛρ2 = 1 corresponds to spherically-symmetric horizon, and is

ω = 0, P2 = 1 − x2,
1
2
R = Λ. (9)

At an isolated horizon, two principal null directions of Weyl tensor must
vanish, therefore it must be of type D, type II or it must be identically zero.
With the assumption, that the Weyl tensor is of type D, we can deduce an
integrability condition for non-extremal horizon, resulting in the same
metric, forΛρ2 ∈] − ∞, 1[. Integrability condition has also solutions
outside of these limits.

Summary

All axisymmetric solutions to the near-horizon geometry equation with a
cosmological constant de�ned on a topological 2-sphere were derived. The
regularity conditions preventing cone singularity at the poles were
accounted for. The one-to-one correspondence of the solutions with the
extremal horizons in the Kerr-(anti-)de Sitter spacetime was found. A
solution corresponding to the triply degenerate horizon was identi�ed and
characterized. The solutions were also identi�ed among the solutions to
the Petrov type D equation.

Adapted coordinates

The general metric of an axially symmetric, two-dimensional manifold is

q = Σ2(x)
(
dθ2 + sin2 θdφ2

)
, (10)

where mφ generates rotational symmetry. We introduce the more
convenient coordinate x which is tied to usual θ coordinate by

dx =
Σ2(θ) sin θ

ρ2 dθ, x ∈ [−1, 1]. (11)

Now metric is of the form

q = ρ2
(
dx2

P2(x) + P
2(x)dφ2

)
P2(x) = Σ

2(x) sin2 θ

ρ2 , (12)

where ρ serves as radius of our horizon i.e. Area(S) = 4πρ.
It follows from de�nition of P,
that it must vanish for x = ±1.
Moreover to avoid conical singu-
larity, we have ensure that for any
δx the circle of such radius around
each pole is of length 2πδx + o(x).
We have to take mx(P2) = ∓2 in
poles (x = ±1). Equivalently it is
a condition for metric continuity.
These boundary conditions for P
are crucial to our results.

Embedding in Kerr-(anti-)de Sitter spacetime

Kerr-(anti-)de Sitter spacetime has three horizons (in general) and, aside
fromΛ, is described by two parameters: M and a – mass of a black hole
and its angular momentum (per unit mass). If at least 2 horizons merge,
then these parameters can be expressed by

a2 =
3ρ2(1 − Λρ2)

(3 − Λρ2) (2 − Λρ2)

M =
2
3

√
ρ2

2 − Λρ2
(3 − 2Λρ2)2

(2 − Λρ2) (3 − Λρ2) ,
(13)

and their positivity forces the same restrictions on the value of
cosmological constant, as before. Details concerning type and numbers of
spacetime horizons are in the table below:

Parameter ranges Number and type of horizons
ΛR2 ≠ 0 one extremal

ΛR2 ∈]0, 1]\
{

3−
√

3
2

}
one extremal and one not

ΛR2 = 3−
√

3
2 merging of all three

These results describe one-to-one correspondence between general
axisymmetric extremal horizon and extremal horizon in Kerr-(anti-)de
Sitter spacetime.
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