Axisymmetric, extremal horizons in the presence of a

cosmological constant
Eryk Buk, joint work with Jerzy Lewandowski (arXiv:2012.15655 [gr-qc])

Near-horizon geometry and isolated horizons

Non-expanding horizon models a black hole, that has constant area. It is a null hypersurface generated by nowhere-vanishing vector ¢, with degenerate
metric tensor g and covariant derivative D induced by its space-time counterpart. In particular it can be Killing horizon. We assume, that expansion of ¢

vanishes.
Isolated horizon is a non-expanding horizon, whose geometry is #Zme-

; independent, that is
y / ? § :3///////— dependent, fat [D,4] = 0 (1

How of matter It models black hole with no mass-energy transfer through its surface. We can
and energy define the rotation one-from ), on isolated horizon, together with surface

gravity «:
W Dﬂgb — &)&lgb, — wﬂg&l. (2)

When surface gravity vanishes, the isolated horizon is called extremal.

low ... isolated

Near-horizon geometry equations Adapted coordinates

Isolated horizon is topologically a product R X §, where a spacelike (indices
A,B,C,...) section S is a compact manifold. Einstein vacuum equations

The general metric of an axially symmetric, two-dimensional manifold is
7= T2(x) (d6* + sin? 6dg?) (10)

where 8¢ generates rotational symmetry. We introduce the more
convenient coordinate x which is tied to usual & coordinate by

B >2(0) sin &
=

with A induce the following constraints on geometry of our section:

1 A
V(Aa)B) + w0p — zRES; + EQAB = (. (3)

We call these the Near-horizon geometry (NHG) equations. One can

prove, that for genus(S) # O the solution is trivial dx

d6, x e [-11]. (11)

1 N tric is of the f
w=0, > R=A (4) OW metric is o ed;)zrm () sin
_ 2 2 2 20\ _
therefore we will be interested in the case S = S». q=2- ( P2(x) + P (x)dp ) P (x) = 2 ) (12)
SO where p serves as 7adius of our horizon i.e. Area(S§) = 4zp.
It follows from definition of P,
Via Hodge decomposition, we can express rotation one-form as that it must vanish for x = =+£1.

Moreover to avoid conical singu-

w = *dU + dlog B, (5)

where scalar functions U and B are unique up to additive and
multiplicative constants Uy and B respectively. It lets us solve NHG

larity, we have ensure that for any
ox the circle of such radius around
each pole is of length 279x + o(x).
We have to take 0,(P?) = F2 in

equations, yielding

B = B(% [QZ; XZ] here OF — 1 %AJOZ (©) poles (x = =1). Equivalently it is

U = arctg (5) + U 1 — Ap? a condition for metric continuity.

oether with These boundary conditions for P
5 are crucial to our results.

. Ap* (Ap* — x*(Ap* —1) = 5) +6
P(x) = (x* — 1) A +32(A?—1) -3 (7) Embedding in Kerr-(anti-)de Sitter spacetime

Positivity of metric and Q? restricts possible values of cosmological
constant to

Kerr-(anti-)de Sitter spacetime has three horizons (in general) and, aside
from A, is described by two parameters: M and 2 — mass of a black hole

Aﬁz €] — oo, 1. (8) § and its angular momentum (per unit mass). If at least 2 horizons merge,
Solution for AJo2 = 1 corresponds to spherically-symmetric horizon, and is then these parameters can be expressed by
1 201 _ A2
w=0, P°=1-x> =R=A (9) 2= 3p°(1 — Ap”)
| | - 2 (3 - ApH) (2= A?)
At an isolated horizon, two principal null directions of Weyl tensor must (13)
. . . . . 9) JOZ ( 3 — 2A JOZ)Z

vanish, therefore it must be of type D, type II or it must be identically zero. M=Z
With the assumption, that the Weyl tensor is of type D, we can deduce an 3\ 2 = Ap*(2 = Ap?) (3 = Ap?)
integrability condition for non-extremal horizon, resulting in the same and their positivity forces the same restrictions on the value of

metric, for Ap* €] — oo, 1[. Integrability condition has also solutions
outside of these limits.

cosmological constant, as before. Details concerning type and numbers of
spacetime horizons are in the table below:

Summary Parameter ranges Number and type of horizons

AR* # 0 one extremal
All axisymmetric solutions to the near—horlz.on geometry equation with a AR2 €10, 1]\ { % } one extremal and one not
cosmological constant defined on a topological 2-sphere were derived. The 3
regularity conditions preventing cone singularity at the poles were AR = = merging ot all three

These results describe one-to-one correspondence between general
axisymmetric extremal horizon and extremal horizon in Kerr-(anti-)de
Sitter spacetime.

accounted for. The one-to-one correspondence of the solutions with the
extremal horizons in the Kerr-(anti-)de Sitter spacetime was found. A
solution corresponding to the triply degenerate horizon was identified and
characterized. The solutions were also identified among the solutions to
the Petrov type D equation.
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