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lfv being a null vector, it follows from (13) that B,B° < 0 for sufficiently
arge .

The total charge e contained in the field can be calculated by means
of Gauss’ law L

dg = | ponrds
s

' Though f* contains terms going as 1/r, nevertheless e is finite by
virtue of (14),
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The aim of this paper is to discuss the connection between the pro-
blem of gravitational radiation and the boundary conditions at infinity.
We shall deal with the concept of energy and momentum in Einstein’s
general relativity and propose 2 prescription for computing the total
radiated energy. A connection between our radiation conditions and the
definitions of gravitational radiation by Pirani and Lichnerowicz is shown
in gection 5. ¥

1. In physics we are ordinarily interested in conservation laws which
have an integral character. A classical conserved quantity is a functional
flo] depending on a space-like hypersurface o, A congervation law is
a statement that, by virtue of the equations of motion, f, in fact, does
not depend on o, As is known, in general relativity the energy-momen-
tum tensor of matter ¥, does not by itseli lead to an integral conserva-
tion law. However, if we introduce an energy-momentum pseudotensor
of the gravitational field t.= (6, + g 06 9ge,)[2%, then the sum
v+ 1, is divergenceless by virtue of Binstein's equations *). Einstein’s
tensor density ©', = 1/ —¢(RB,,— 0, R) can namely be written in the form

(1) 6, = (b +uu}m,l) 9
where the ‘“superpotentials® Ut are given in [1]

A o/ ologr A1 _ !
(2) 2 =V 99700 Yooe = — 26U,

*) We ghall use the notations of the preceding paper; gu» will denote the metric
tensor of the Riemannian gpace-time ¥,. Gothic letters denote tensor densities and
also “psendoquantities” such as the superpotentials. :
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If the Einstein equations

(3) Gp= —xT,,
are satisfied, then Egs. (1) and (2) imply

(4) T+t =U",, thus (T +t),=

The functions t,” are not components of a tensor density (equivalence
principle) and many physicists (e. g., Schrédinger [2]) have raised doubts
as to their physical meaning. Einstein [3] and F. Klein [4] formulated
some conditions which enable us to consider the integrals

(5) P,[o] = {( Tr+1,)d8, = flI”dS’M

as representing the total energy and momentum of the system: matter
and gravitational field. These conditions can be summarized as follows.
Let us take an isolated system of masses (7, = 0 outside a bounded
3-region) and assume the existence of co-ordinates such that [5]

(6) Juv=Nu+0),  Gu,= 0@,

where  denotes the distance measured along geodesics from a fixed point
on a space-like . Eqs. (6) have a double meaning: they constitute a 8y-
stem of boundary conditions, and they distinguish a set of co-ordinate
systems (“Galilean at infinity”).

Using (4) it can be easily proved that: 1° — P,[a], calculated from (5)
in a co-ordinate system satisfying (6), is always finite and does not de-
pend on g; 2° — P, does not depend on co-ordinate changes which do
not alter (6) and reduce to an identity for r—oo; 3° — P, is a vector
with respect to linear orthogonal transformations. The proof is based
on the vanishing of the integral '

) po= [(T)+1))as8,
P

taken over a iime-like ‘“‘cylindrical” hypersurface X at spatial infinity
(note that 8 appearing in (5) is the intersection of Z and o). The va-
nishing of these integrals is ensured by (6) (t,” is quadratic in Gur,e) and
our assumption on 1',,. The integral (7) can eventuaully be identified
with the total energy and momentum radiated through X, and Lichne-

rowiez’s boundary conditions (6) antomatically exclude the existence of
any radiation.

2. Comparison with electrodynamics suggests that radiation fields
in general relativity should be characterized by g,.,~1/r, rather than
bY gwe~1/r’. However, if the integrals (7) do not vanish, the proof
of the Hinstein-Klein theorem is no longer valid and doubts as to the

Radiation and Boundary Conditions in the Theory of Gravitation 409

meaning of (5) arise anew. We propose to generalize the boundary con-
ditions (6) in such a way as to include radiation fields, We expect that
these conditions will ensure the finiteness of P, and that P, will not
change with co-ordinate fransformations which reduce to an identity
for r—>oco and preserve the form of the boundary conditions, The de-
pendence of P, on ¢ will now correspond to the dlmlmshmg of total
energy due to radiation.

Fock [6] proposes to normalize the co-ordinate systems by means
of de Donder’s relation

(8) =0

and imposes on g, the radiation condition of Sommerfeld. We find this
formulation somewhat stringent, In particular, we see no reason for
restricting ourselves to harmonie co-ordinates only. There is no con-
vincing argument for writing the Schwarzschild line element in harmonic
co-ordinates instead of, say, in isotropic ones.

We generalize the conditions of Fock along the lines presented in
the preceding paper. First, introduce a null vector field %, defined as
follows. Let #»* be a unit space-like vyector lying in o, perpendicular to
the “sphere” r = const., and pointing outside it., We put "= w4+,
where ¢ denotes a unit time-like vector normal to o, such that ° > 0.

Now, we formulate the following boundary conditions to be imposed
on gravitational fields dne to isolated systems of matter: there exist
co-ordinate systems and functions h,, = Q(r=) such that

() G =T EOG); Gy = huleg 400,
(10) (b — 310 o) K = O (%) .

These conditions correspond to Sommnierfeld’s ¢Ausstrahlungsbedin-
gung’’; we obtain the ‘Einstrahlungsbedingung’ assuming »* to be
a normal pointing inward the sphere # = const. Relations (9), (10) are
weaker than (6); this means that every field fulfilling (6) satisfies also
our conditions (9),(10), The class of co-ordinate systems distinguished
by (9) and (10) is larger than that defined by (6). Eq. (10) restricts the
co-ordinate systems to those which are asymptotically harmonic; however,
it must be noted that isotropic co-ordinates used in the Schwarzschild ¥,
are asymptotically harmonic in our meaning.

Strictly speaking the correctness of conditions (9) and (10) might
be inferred only if it were possible to show that Einstein’s equations
with bounded sources have always exactly one solution satisfying (9),
(10). But it is not an easy task to prove this theorem.

8. We shall now present some consequences of (9) and (10). First
of all, we must examine the convergence of energy integrals (5). The
superpotentials are linear in g,, and thus go as 1/r; we must therefore
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show that the terms behaving as 1/r cancel out in the surface integral (5).
Indeed, the surface element dS; is proportional to nyf,; = nuk,, and
the terms in question in (5) can be written as 5”8, hyk-kyny. Taking
into account (10), we verify that this expression does vanish,

Let us take a co-ordinate transformation

(11) v 3" =+ a"(x)
fulfilling
(12) @®=0(r), G,=>bk,+0(r?
where
@ = Npu®*y  by= O0(r1),
and
(13) Qo= bupliy +0( %), b,=0(7).

From (13) follows the existence of funetions ¢,= O(r~') such that
(14) Bop— 6kt 0(2) .

Co-ordinate transformations (11) satisfying (12) and (13) preserve
the form of our boundary conditions; this can be easily seen from the
transformation formulae for g, and h,:

Gl ®') 22 (@) + b Koy 4 Bk s
hl’“’(w’) 2= hlﬂ'(%) + OH ki’ + Gy k[,l ?

Computing the superpotentials in both co-ordinate systems and
taking into account the relations (9)-(15) we obtain

U ing = UWkm+ 0 ().

Therefore, the total energy and momentum P, are well defined by (5)
and the boundary conditions (9), (10). It must be noted that our pre-
scription demands that the caloulation of P, should be performed by
means of (B) using co-ordinates which satisfy Eqgs. (9) and (10). This
does not at all mean that the energy is only a property of the co-ordinate
system. The vector P,[a] constitutes a global characteristic of the field
and it is only for computational purposes that we must appeal to (9), (10).

4. The total energy and momentum p, radiated between two hyper-
surfaces ¢ and o' is given by (7), or by

pu= PJo]1-Plo']= [tas,
z

(T,, vanishes on X). The boundary conditions enable the estimation
of p,; we have, indeed,

(16) t.’: — Tklu,kzv—f— 0(-}‘—3)75
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where
(17) 437 = B (R — 3902 hyo)

7 is invariant with respect to transformation (15) and is non-negative
by virtue of (10); therefore p,>> 0, The existence of radiation is cha-
racterized by p,# 0.

We could also take a more general case, including the electroma-
gnetic field. The boundary conditions for g,, should be supplemented by
those for f,, given in the preceding paper,

We obtain in this case T, +1,) = 7k, k' +0(r3), 0 <7=0(r2).

5, Pirani [7] and Lichnerowicz [8] recently proposed definitions of
pure radiation fields. It may be interesting to compare their definitions

. with our approach. Let us admit the additional but reasonable assump-

tion that the second derivatives of g, also go to 0 as 1/r and that
Gumgs = By oko. From by, ok, = by, k, there follows the existence of fune-
tions 4, = O(r7') such that

(18) g,m.v,ga = /i"uv k‘g k‘o’ ? (7;,” . %1’],", ’i]ga‘igg) l;p it 0.
For the curvature tensor we get
(19) B = ki tagks .

The principal part of R,,, has therefore the same form as a discontinuity
of the Riemann tensor [9] and is thus of type II in the Petrov-Pirani
classification [7]. '

The terms proportional to 1/r in R, cancel out by virtue of (10).
Conversely, B, ~ 0 and BEq, (18) imply R, =~ 0 unless &k = 0. If we
take into account the electromagnetic field, Einstein’s equations can be
written in the form

(20) R,lw == Qkﬂk‘v +0(T_3) 3 0 = 0 (‘7’—2) 1
Moreover, it follows from (19) that
(21) k[M‘RW_J]UT = 07 kM-R;wQU = 0.

If one replaces the asymptotic equalities ~ by strict ones, then Eqs. (20)
and (21) become Lichnerowicz’s conditions [8] characterizing a pure ra-
diation field. The definitions of Lichnerowicz and Pirani concern the
idealized case of pure radiation, Actual metrics approach these radiation
fields only in the limit r—co (Wave zone).

The author is greatly indebted to Professor L. Infeld for his kind
interest in this work, Thanks are also due to Dr. F, Pirani and W. Tul-
czyjew for stimulating discussions. :
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On the Isobars of the Nucleon in the Fixed-Source Theory

The aim of this paper is to add some remarks o the discussion of
| isobars of the nuecleon in the fixed-source pion theory [1].
In this theory the Hamiltonian has the form

(1) . H:- .ZI’I+H1‘I+HInt3

‘where

2) Y = § [ dlai+pi(— A+ 1)l

(3) H™ = goyy; | duodips = —gor; [ duwdiows

and M is the bare mass of the nmucleon.
Using the orthonormal expansions

- Bl x
(4) (@) = O, dhten(r) Yunl®, 9)
Alm
(5) (@)= ) pihmen() Yiu(®, 9) ,
Adlym

we separate all degrees of freedom with I = 1 [2] (we assume (&) = ¢(7)):
If we introduce the notation

1 : ne .
u‘_,a(qﬁﬁ +i) =1

6 iy s I A .
(6) Qi ;i—g(qgl)l_qul)l 7 =9
. { g i=3

an

1@ ooy
1‘3(1’111 + pina g=1

7 e N R A .
(7) D ﬁ(pﬁ)l_p%) §=19

pih i=3,
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