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Plan of the talk

e GFTs : what are they?
e general formalism
e GFTs and tensor models
e GFT and LQG

e GFT and spin foam models

e current research directions
e foundations of the GFT formalism
 GFT renormalization
* physical applications
e GFT condensate cosmology
e horizon entropy via GFT methods

* entanglement, tensor networks and holography



Part |
the GFT formalism

a) basic QFT elements, combinatorics
and relation to tensor models



Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

(QFT of spacetime, not defined on spacetime) a QFT for the building blocks of (quantum) space

Quantum field theories over group manifold G (or corresponding Lie algebra) Q : GXd — C

relevant classical phase space for “GFT quanta”: (T* G) <d (g X G) xd

(13})

one-particle” Hilbert space H, = L* (Gd; d,uHaaT)
can reduce to subspaces in specific models depending on conditions on the field

d is dimension of “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

example: d=4 90(91,92793794> <~ Sp(blab27b3ab4) — C

arguments of GFT field: ~ b; € su(2) ¢; € SU(2)

e.g. discretised topological SU(2) BF variables (B-field and connection)
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(QFT of spacetime, not defined on spacetime) a QFT for the building blocks of (quantum) space

Quantum field theories over group manifold G (or corresponding Lie algebra) Q : GXd — C

relevant classical phase space for “GFT quanta”: (T* G) <d (g X G) xd

(13})

one-particle” Hilbert space H, = L* (Gd; d,uHaaT)
can reduce to subspaces in specific models depending on conditions on the field

d is dimension of “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

example: d=4 90(91,92793794> <~ Sp(blab27b3ab4) — C

arguments of GFT field: ~ b; € su(2) ¢; € SU(2)

e.g. discretised topological SU(2) BF variables (B-field and connection)

very general framework; interest rests on specific models/use
(most interesting QG models are for Lorentz group in 4d)




Group field theories

a QFT for the building blocks of (quantum) space

F(Hy) = Py—y sym { < (1) ® 7-[(2) C R H(V)) } boson statistics is -assumption-

(can construct, e.g., fermionic models)

Fock vacuum: “no-space” (“emptiest”) state |0 >

single field “quantum” spin network vertex or tetrahedron (g1, 92,93, 94) < ©(B1, By, Bg, B,) — C
(“building block of space”)

e %

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

AN




Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

A

S(0.7) = 5 [ alelodK(g)elo) + 1y [ 1dgialo(gi)-e@p)Vlgiassin)  + e
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in pairing of field arguments
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a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)
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“combinatorial non-locality” /
in pairing of field arguments

specific combinatorics depends on model

simplest example (case d=4): simplicial setting



Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A

S(p,P) = 5/[d9i]¢(gi)’c(gi)%0(gi) + ﬁ/[dgz'a]@(gzl)----Sﬁ(giD)V(gz’a,giD) + c.c

“combinatorial non-locality” /
in pairing of field arguments

specific combinatorics depends on model

simplest example (case d=4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)



Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

A
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“combinatorial non-locality” /
in pairing of field arguments

specific combinatorics depends on model

simplest example (case d=4): simplicial setting 2
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum
ANT

Z sym (L") A

r

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

z _ /D@D@ RSN

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)




Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum
ANT

z _ /D@D@ RSN

||
(]
<
£
Z
N
=

Feynman diagrams (obtained by convoluting’ propagators with interaction kernels) =
= stranded diagrams dual to cellufar complexes of arbitrary topology

(simplicial case: simplicial compjexes obtained by gluing d-simplices)

model-dependent:

- class of complexes summed over

« expression of Feynman amplitudes

amplitude for each

sum over triangulations/complex : .
triangulation/complex




GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, ..... )

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data
purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations

dropping group/algebra data
example: d=3 (or restricting to finite group)

T’ijk X ZX[S — C

0(91,92,93) : G° = C  =—p Tije : X% = C

A
41/ N3

Z TijkalmejnTnli

17klmn

1
S(T) = 5 Z Lijidkgi —

©,,k
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same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data
purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations

dropping group/algebra data
example: d=3 (or restricting to finite group)

T’ijk X ZXIS — C

P(91:92:93) : G0 5 C = . xx3_, ¢

A
41/ N3

Z T’ijkalmejnTnli

17klmn

1
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1,9,k

Feynman diagrams are stranded graphs dual to 3d simplicial complexes
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, ..... )

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data
purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations

dropping group/algebra data
example: d=3 (or restricting to finite group)

T’ijk X ZX[S — C

0(91,92,93) : G° = C  =—p Tije : X% = C
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Quantum dynamics:
y )\Vr

7 = [ DT e 5T — T — NI —5Vr
/ ’ zr:sym(I’) : zr:sym(I’)

can be recast in terms of Regge action for gravity discretised on equilateral triangulation

purely combinatorial definition of quantum gravity



GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, ..... )

crucial issue: analytical control on sum over graphs/complexes » key tool: colouring

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

two (equivalent) implementations:



GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, ..... )

crucial issue: analytical control on sum over graphs/complexes » key tool: colouring

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

two (equivalent) implementations:

1) colouring tensors(GFT fields)
L LY —C a=0,1,2,3

Face gluing

E-rl

Propagator

|
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crucial issue: analytical control on sum over graphs/complexes » key tool: colouring

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

two (equivalent) implementations:

2) colouring indices (field arguments) - new U(N)Ad symmetry

interaction associated to coloured bubbles:
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, ..... )

crucial issue: analytical control on sum over graphs/complexes » key tool: colouring

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

two (equivalent) implementations:

key results (2010 - ....):
1/N expansions
double scaling limits

phase transitions



Part |
the GFT formalism

b) quantum geometry and relation with
LQG (and spin foam models)



Group field theories and Loop Quantum Gravity

DO, ‘13

kinematics: Hilbert space close to LQG one - same spin network dofs, but organised differently

ge: w S ) M, = 12 (PG =TI dutte)
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Group field theories and Loop Quantum Gravity

DO, ‘13

kinematics: Hilbert space close to LQG one - same spin network dofs, but organised differently

LQG: H = lim Ufy fHW _ L2 (/_l) 7_[7 — L2 (GE/GV,CZ,LL — H dluHaafr)

~ ~

in GFT, spin networks (cylindrical functions) decomposed into building blocks, and re-organized into Fock space

1

3 m !
6 9 FH.) = @, sym{( PVeuPe -oul ))}
gl‘ gg Wy = 12 (G*4G
\ e

ny C HV \P’Y(G%b) — H / daab ooy Jia & gzjb, e 7gjba%b7 X ) — \ijy(gia(gjb)_l)

[(ia),(jb)

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space




Group field theories and Loop Quantum Gravity

DO, ‘13

kinematics: Hilbert space close to LQG one - same spin network dofs, but organised differently

LQG: H = lim Ufy fHW _ L2 (/_l) H’y — L2 (GE/GV,CZ,LL — H dluHaar)

~ ~

in GFT, spin networks (cylindrical functions) decomposed into building blocks, and re-organized into Fock space

1

3 m .
6 9 FH.) = @, sym{( PVeuPe -oul )>}
gl‘ T Wy = L2 (GG
\ e
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[(ia),(jb)

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space

- for any canonical observable (incl. Hamiltonian constraint) ——> GFT observable in 2nd quantisation
Onm = X1y, Xrn| Onm|X15 s Xo) = Onom (;Zl, ooy Xm> X1 ,)Z,’n) o

— On,m (@, @T) — /[dﬁz] [d?];] @T(gl)--@T(gm)On,m (gla --7§’m7§¥17 7.@;1) @(g’,l)@(g’?,z)



Group field theories and Loop Quantum Gravity

DO, ‘13

GFT dynamics <— — —> “canonical” (or “1st quantized”) dynamics (see also L. Freidel, '06)

start from operator dynamics = projector operator equation: P |U) = |U)



Group field theories and Loop Quantum Gravity

DO, ‘13
GFT dynamics <— — —> “canonical” (or “1st quantized”) dynamics (see also L. Freidel, ’06)

start from operator dynamics = projector operator equation: P |\I!> = |\If>

constraint as operator on Fock space + compute matrix elements + convolute with field operators
“2nd quantised” GFT observabile:

0
FIU) = Aum | Y &L @l P (X1s oo Xoms Xy s X)) Pt Bxn — D DLy | [®) = 0
n,m {0} X




Group field theories and Loop Quantum Gravity

DO, ‘13

GFT dynamics <— — —> “canonical” (or “1st quantized”) dynamics (see also L. Freidel, '06)

start from operator dynamics = projector operator equation: P |U) = |U)

constraint as operator on Fock space + compute matrix elements + convolute with field operators
“2nd quantised” GFT observabile:

1

(XX} ¢

X

FIW) = Aum | D @@l Pran (X1, X X s ) BpB, — D kb | 19) = 0
n,m

GFT partition function from “grand-canonical ensemble for spin networks”:

Zy =Y (s~ (F=uN), / DeDp e 19 (g e (F=18) | )

AN

with effective ampiitude: e~ 191° (o] e (F=8N) |0} = = Sers



Group field theories and Loop Quantum Gravity

DO, ‘13

GFT dynamics <— — —> “canonical” (or “1st quantized”) dynamics (see also L. Freidel, ’06)

start from operator dynamics = projector operator equation: P |\I!> = |\If>

constraint as operator on Fock space + compute matrix elements + convolute with field operators
“2nd quantised” GFT observabile:

1

(XX} ¢

X

FIW) = Aum | D @@l Pran (X1, X X s ) BpB, — D kb | 19) = 0
n,m

GFT partition function from “grand-canonical ensemble for spin networks”:

Zy =" (sle” (F=mV)] /Dsopsoe 9 (ol e~ (F=5N) 1)
S
with effective ampiiude: e~ 121 (] e (F=#N) 1) = = Sers
up to quantum corrections (or for normal ordering): GFT model with action:
S (0, 0") = /dgso
F
) D”*?“ U 4] [455) ¢1(51)-++0" (Gin) Victm (G0, s Gons G5+ T0) 90(97’1)---%0@)] - %\q‘z@

Vn—|—m (917 °°'7gmaglv 7.57,1) — Pn—l—m (glv "'7§m7.§417 7§»/n)



Group field theories and spin foam models

(spin foam model: sum over histories for LQG-like states (spin networks ~ quantum simplicial geometries))

=l

guantum history = spin foam (complex with algebraic data)

need to specify: class of complexes + type of algebraic data

gquantum amplitude for spin foam —-> quantum amplitude for spin foam complex
{I‘} Z(T) = > HAfJI HA (J, 1) HA (J, 1)

{J AT }5,37 5,9

Reisenberger, Rovelli, Baez, Barrett, Crane, Perez, DO, ......

complete (formal) definition of SF model:

set of all quantum amplitudes for all spin foam complexes (in the chosen class) + organization principle

different prescriptions available for “organization principle”



Group field theories and spin foam models

Boulatov, Ooguri, Freidel, Rovelli, Reisenberger, Perez, Oriti, Baratin, Livine, ,.......

the GFT proposal:

spin foam model with sum over complexes as perturbative expansion of GFT (valid for any SF model)

AL KD ~K@) g
Z(T) > C Ac(J, 1) il V(J, 1) ~V(g) P, P)
Ay (J, 1)




Group field theories and spin foam models

Boulatov, Ooguri, Freidel, Rovelli, Reisenberger, Perez, Oriti, Baratin, Livine, ,.......

the GFT proposal:

spin foam model with sum over complexes as perturbative expansion of GFT (valid for any SF model)

As(]) KD ~K@9) | g o
ZT) ¢ A(JI) - V(J.T) ~ V(g) <~ S(p, Q)
Ay (], 1

z - / DD ¢t S (#:7) Ar Z(T) = A

construction ambiguities and computational difficulties remain, (see talks by Speziale, Dona’, Finocchiaro)
but several advantages:
» precise and constrained prescription for combinatorial weights + way to parametrize SF ambiguities

- QFT re-interpretation and techniques + ways to go beyond spin foams themselves



Group field theories, LQG and spin foam models
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Group field theories, LQG and spin foam models

. _ 2V
Z = /D@D@ el ONpP) = Ar
EF: sym (L")

Feynman amplitudes (model-dependent):

equivalently:
spin foam models (sum-over-histories of
spin networks ~ covariant LQG)
Reisenberger,Rovelli, ’00
. lattice gravity path integrals
(with group+Lie algebra variables)
A. Baratin, DO, ‘11

GFT as lattice quantum gravity:

@ynamical triangulation9+@uantum Regge calculus)




Group field theories, LQG and spin foam models

. _ 2V
z /DQODE loN(e®) Ar
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Group field theories, LQG and spin foam models

Z
Zy = > (sle” (F=1M)]s)

S

ANT

= | DyDp ¢ Sx(e,p) Ar
/ 21; sym(I')

with GFT action:

S (e ) = m2/d§¢T(§)¢(§) —

S [ T) @)1 ) Vit (s Grs so 2) 95000

—/

Vn—i—m (15 G G1s -2 Gn) = Prgm (G1s - G G1s - )

T~

(direct path:  canonical <— —> covariant LQG )

spin foam vertex amplitude
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QG as GFT: new research directions

One possible concrete, and complete realisation of QG based on spin networks/simplicial geometry
Translating Quantum Gravity questions (e.g. from LQG or spin foams) into GFT offers new perspective

New tools from QFT become available thanks GFT embedding

in particular, it may become possible/easier to:
- define rigorously quantum statistical mechanics for QG degrees of freedom
- relate nicely canonical and covariant formulations
- study inequivalent representations and symmetries of QG system
 constrain quantum ambiguities via renormalizability
« define continuum limit and control macroscopic phase diagram
- extract effective continuum physics (GR + QFT + corrections)

- make contact with QG phenomenology
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research directions

a) foundations of the GFT formalism



Foundations of group field theories

guantum statistical mechanics of spin networks (within GFT Fock space)

give precise meaning to: 2, = Z(S\e_ (F - ) |s)

S N.B. related to problem of “generally
covariant statistical mechanics”,
including gravitational field

it entails understanding more rigorously:
- identification and encoding of QG (GFT) thermodynamic potentials
- statistical implementation of quantum dynamical constraints G. Chirco, I. Kotecha, M. Laudato, F. Mele, DO, in prep.
« QG notion of “equilibrium” (e.g. via KMS condition on abstract QG algebra)

|. Kotecha, DO, to appear
- deparametrization wrt internal clock and recovering of standard quantum statistical mechanics

see talk by Kotecha

needed for rigorous relation between canonical (operator) and covariant (path integral) QG formulations



Foundations of group field theories

symmetries, conservation laws and symmetry breaking

GFTs are non-local quantum field theories

S(p,P) = 1/[Olgi]90(97;)/C(gz-)s&(gi) + i/[dgq:a]sf)(gz-l)----90(5?7;1))1/(9@-@,f?m) + cec

2 D!
\

“combinatorial non-locality”
in pairing of field arguments

(at classical and quantum level) need to:
 generalise Noether framework A. Kegeles, DO, 15, ‘16
- identify symmetries and conservation laws for interesting models

- adapt theory of symmetry breaking (to have more control over non-perturbative sector)



Foundations of group field theories

symmetries, conservation laws and symmetry breaking

GFTs are non-local quantum field theories

S(p,p) = 1/[Olgi]90(97;)/C(gz-)90(97:) + i/[dgq:a]sf)(gz-l)----90(5?7;19)1/(97@,@;D) +  cec.

2 D!
\

“combinatorial non-locality”
in pairing of field arguments

(at classical and quantum level) need to:
 generalise Noether framework A. Kegeles, DO, 15, ‘16
- identify symmetries and conservation laws for interesting models

- adapt theory of symmetry breaking (to have more control over non-perturbative sector)

inequiva|en’[ represen’[ations of guantum (GFT  seetalk by Kegeles (and Geiller for LQG perspective)

like any (infinite-dimensional) quantum system, GFTs (as LQG) may have inequivalent realisations

need to:
- define carefully thermodynamic & continuum limits A. Kegeles, DO, to appear

- identify inequivalent representations (possibly corresponding to different phases of continuum theory)
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research directions

b) GFT renormalization:
consistency and continuum limit



GFT renormalization: constraining ambiguities

S (05 2V
Z= [ DpDp &P = N Ar
sym(T’)
r
Issue 1- many construction and quantisation ambiguities in definition of GFT model
' (thus, many models) (LQG canonical constraint, spin foam amplitudes) -
background independent counterpart of issue of renormalizability in perturbative QG
Perez, ‘07
) : . .. ) i i EPRL,’07, Freidel-Krasnov, ’07,

exact way of imposing simplicity constraints in spin foam models Baratin-Oriti, '11, Dupuis-Livine, ‘11
generalisations at combinatorial level (which complexes?) Finocchiaro, DO, to appear
guantisation ambiguities (choice of quantisation map) Alexandrov, '10; Ding, Han, Rovelli, '10; Guedes, DO, Raasakka, ‘12

guantum corrections and stability of spin foam amplitudes, divergences

“measure” terms
see talk by Finocchiaro



GFT renormalization: constraining ambiguities

S (o 2V
Z= [ DpDp &P = N Ar
sym(l')
I’
_ many construction and quantisation ambiguities in definition of GFT model
Issue 1: . . . .
(thus, many models) (LQG canonical constraint, spin foam amplitudes) -
background independent counterpart of issue of renormalizability in perturbative QG
Perez, ‘07
) : . .. ) i i EPRL,’07, Freidel-Krasnov, ’07,
exact way of imposing simplicity constraints in spin foam models Baratin-Oriti, *11, Dupuis-Livine, ‘11
generalisations at combinatorial level (which complexes?) Finocchiaro, DO, to appear
guantisation ambiguities (choice of quantisation map) Alexandrov, '10; Ding, Han, Rovelli, '10; Guedes, DO, Raasakka, ‘12
guantum corrections and stability of spin foam amplitudes, divergences
measure” terms see talk by Finocchiaro

translating in QFT perspective:

« GFT perturbative renormalization see talk by Carrozza

—-> renormalizability of GFT model (spin foam amplitudes)

= existence of consistent dynamics for (at least) a wide range of scales



GFT renormalization: continuum limit

ANT

z /DQDD@ lN(e®) Ar
EF: sym(T’)

Issue 2: ( controlling quantum dynamics of more and more interacting QG degrees of freedom)

control quantum dynamics for boundary states involving (superpositions of) large graphs
compute spin foam amplitudes for finer complexes and corresponding sum over complexes

up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations

need control over theory space
expect different phases and phase transitions as result of quantum dynamics
(what are the phases of LQG?) Koslowski, '07; DO, ‘07

see talk by Dittrich for lattice spin foam perspective



GFT renormalization: continuum limit

ANT

z /DQDD@ lN(e®) Ar
EF: sym (L")

Issue 2: ( controlling quantum dynamics of more and more interacting QG degrees of freedom)

control quantum dynamics for boundary states involving (superpositions of) large graphs
compute spin foam amplitudes for finer complexes and corresponding sum over complexes

up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations

need control over theory space
expect different phases and phase transitions as result of quantum dynamics
(what are the phases of LQG?) Koslowski, '07; DO, ‘07

see talk by Dittrich for lattice spin foam perspective
translating in QFT perspective:

- GFT non-perturbative renormalization

_ . see talk by Carrozza
— —> computing RG flow of quantum dynamics
— —> defining full GFT partition function (spin foam amplitudes) without cut-offs

= definition of full continuum theory and identification of macroscopic phases



GFT renormalisation - general scheme

. _ \Vr
Z — | DODG et ore:?)
/ ©DP e zl;sym(F) Ar
S(0.9) = 5 [ ldglp@@Kle)e(a) + 7 [lgiade(gn)mpl@ioVgiagin) + e

general strategy:

treat GFTs as ordinary QFTs defined on Lie group manifold

use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

« need to have control over “theory space” (e.g. via symmetries) A. Kegeles, DO, '15,'16

 main difficulty:
controlling the combinatorics of GFT Feynman diagrams and interactions to control RG flow and divergences
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, .....



GFT perturbative renormalisation

recent results:

[ 9/1
towards renormalizable 4d gravity simplicial GFT models: f; gﬁ’?
3 3
- calculation of some radiative corrections “
T. Krajewski et al., '10; A. Riello, '13; Bonzom, Dittrich, ’15; .... ; M. Finocchiaro, DO, "17 see talk by Finocchiaro

- finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term) Ben Geloun, Bonzom, '11; Ben Geloun, ‘13

- renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, 11
Carrozza, DO, Rivasseau, '12. ‘13

-> with gauge invariance S(p,P) = Z tols (0, B)
—> non-abelian ( SU(2) ) , be B

— —> non-abelian SU(2) model beyond melonic sector

———>50(4) or SO(3,1) with simplicity constraints: first steps Lahoche, DO, '15; Carrozza, Lahoche, DO, ‘17
— — — —> generic asymptotic freedom/safety

Ben Geloun, '12; Carrozza, '14; Carrozza, Lahoche, ‘16

see talk by Carrozza



GFT non-perturbative renormalisation

two directions:

- GFT non-perturbative renormalization and “IR” fixed points (e.g. FRG analysis - e.g. a la Wetterich

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Ousmane-Samary, Duarte, ....

* GFT constructive anaIySIS Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, .....

non-perturbative resummation of perturbative (SF) series

variety of techniques: - intermediate field method
* loop-vertex expansion
« Borel summability

+
see talk by Carrozza

many results in simpler tensor models



GFT non-perturbative renormalisation

recent results: see talk by Carrozza
FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)
Eichhorn, Koslowski, ‘14
- Polchinski formulation based on SD equations Krajewski, Toriumi, ‘14

+ general set-up for Wetterich formulation based on effective action

- analysis of TGFT on compact U(1)Ad Benedetti, Ben Geloun, DO, '14 ; Ben Geloun, Martini, DO, "15, ’16,
Benedetti, Lahoche, '15; Ben Geloun, Duarte, Koslowsk, DO, to appear
- RG flow and phase diagram established Carrozza, Lahoche, DO, “17

« analysis of TGFT on non-compact RAd

0.2

* RG flow and phase diagram established
- analysis of TGFT on non-compact R”Ad with gauge invariance 004
* RG flow and phase diagram established
- analysis of TGFT on SU(2)A3  Carrozza, Lahoche, 16 -
generically (so far):
two FPs (Gaussian-UV, Wilson-Fisher-IR)

asymptotic freedom

Y,
4

one symmetric phase e |

one broken or condensate phase

(non-trivial minimum of classical potential) 0.00 oot 0.02 0.03 0.04
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Part ||
research directions

C) extracting effective continuum physics

advantages of GFT formalism:
control over (large) superpositions of spin network states via 2nd quantised formalism
new (QFT) analytic tools for control over sum over complexes in quantum dynamics

bypassing (some) conceptual issues by adapting QFT tools



GFT condensate cosmology

Cosmology from QG perspective see talk by Wilson-Ewing for LQC perspective

- few “macroscopic” observables, of “global” nature (understood as suitably defined averages
over fundamental degrees of freedom, e.g. inhomogeneities, microscopic dofs, ...)

* close to equilibrium

* insensitive to (or not too much affected by) microstructure
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GFT condensate cosmology

Cosmology from QG perspective see talk by Wilson-Ewing for LQC perspective

- few “macroscopic” observables, of “global” nature (understood as suitably defined averages
over fundamental degrees of freedom, e.g. inhomogeneities, microscopic dofs, ...)

* close to equilibrium

* insensitive to (or not too much affected by) microstructure

l cosmology as
hydrodynamics regime! .

Quantum Gravity hydrodynamics

what could be the relevant hydrodynamic observables in QG?
simple averages of “one-body” observables, extensive in the “number of atoms of space”

e.g. the total volume V of space, if each “atom of space” gives a contribution to it

what would key hydrodynamic quantities look like in QG?

one key hydrodynamic quantity would be reduced “one-body” density,
i.e. some function on the space of data associated with a single “atom of space”

(cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it)




GFT condensate cosmology

see talk by Gielen

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qgc] ................

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation
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GFT condensate cosmology

see talk by Gielen

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

( Quantum GFT condensates are continuum homogeneous (quantum) spaces ]

e.g. (simplest): GFT field coherent state
o) := exp (6) |0)
o= [digalandl (o  algrk) = ol

superposition of infinitely many spin networks dofs,
“gas’of tetrahedra, all associated with same state

special states with (plausible) continuum geometric interpretation:

infinite dofs, such that, if one tries to reconstruct continuum geometry from them, one obtains same geometric
data at each “point”, i.e. homogeneous spatial (quantum) geometry (still, fully diffeo-invariant)


http://arxiv.org/abs/arXiv:1303.3576

GFT condensate cosmology

see talk by Gielen

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qgc] ................

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

[ Quantum GFT condensates are continuum homogeneous (quantum) spaces ]

e.g. (simplest): GFT field coherent state
o) :=exp (6)[0)

5 / d*g o(gn)@' (91)  olgrk) = olgr)

superposition of infinitely many spin networks dofs,
“gas’of tetrahedra, all associated with same state

o (D) D ~ {geometries of tetrahedron} ~
described by single collective wave function

(depending on homogeneous anisotropic geometric data)

2

{continuum spatial geometries at a point} =~

2

minisuperspace of homogeneous geometries


http://arxiv.org/abs/arXiv:1303.3576

GFT condensate cosmology

see talk by Gielen

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

[ Quantum GFT condensates are continuum homogeneous (quantum) spaces J

described by single collective wave function (1-particle density)
(depending on homogeneous anisotropic geometric data)

problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states
. . . 5V
equation for “condensate wave function”: / / / __
: [ 16 Rigi.g)a(al) + 252l me =0
1

infinite superposition of Feynman diagrams
(infinite sum over discrete “spacetime” lattices)

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”
QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

similar to quantum cosmology, but: no Hilbert space structure (no superposition of “states of universe”, no “collapse of
wavefunction”) - “statistical nature” of wavefunction; still, fluctuations of geometric quantities


http://arxiv.org/abs/arXiv:1303.3576
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S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

[ Quantum GFT condensates are continuum homogeneous (quantum) spaces j

described by single collective wave function
(depending on homogeneous anisotropic geometric data)

problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states

following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
non-linear extension of quantum cosmology equation for collective wave function
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GFT condensate cosmology

see talk by Gielen

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

[ Quantum GFT condensates are continuum homogeneous (quantum) spaces j

described by single collective wave function
(depending on homogeneous anisotropic geometric data)

problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states

following procedures of standard BEC

~
QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
non-linear extension of quantum cosmology equation for collective wave function y

cosmology as QG hydrodynamics!!!


http://arxiv.org/abs/arXiv:1303.3576

GFT condensate cosmology

summary of recent results: see talk by Gielen

general scheme, geometric interpretation and effective dynamics S. Gielen, DO, L. Sindoni, ‘13

generalised condensate states (also for spherical black holes)
DO, D. Pranzetti, J. Ryan, L. Sindoni, '15; DO, D. Pranzetti, L. Sindoni, ‘15

lattice refinement and GFT cosmological observables S. Gielen, DO, ‘14

relation with LQC S. Gielen, ’'14, ’15, '16; G. Calcagni, ‘14

effective cosmological dynamics from EPRL model DO, L. Sindoni, E. Wilson-Ewing, ‘16

* generalised Friedmann equations

» generic big bounce resolution of classical singularity see talks by:

» reduction to LQC dynamics De Cesare, Pithis, Wilson-Ewing
- effect of GFT interaction in emergent cosmological dynamics
- long-lasting acceleration after bounce (no inflation) M- De Cesare, A. Pithis, M. Sakellariadou, "16

* non-normalisable condensate states (hints of GFT phase transition?) , ... i sakellariadou. P. Tomov. 16

- first analySiS of dynamics of aniSOtrOpieS A. Pithis, M. Sakellariadou, '16; M. De Cesare, DO, A. Pithis, M. Sakellariadou, to appear

- cosmological perturbations S. Gielen, '14, "15; F. Gerhardt, DO, E. Wilson-Ewing, to appear; S. Gielen, DO, to appear



Quantum hOrIZOnS |r] fU” QG Vla GFT see talk by Pranzetti

DO, D. Pranzetti, L. Sindoni, PRL, ‘15

GFT allows to go beyond (symmetry-reduced) models and control continuum states involving large
superpositions of spin networks (also using tensorial techniques, e.g. colouring and dipole moves)

generalised GFT condensate states for arbitrary topology:

- obtained from initial “seed” graph by action of “refinement operators” H fr r.g, My w)|seed)

- homogeneous shell (two spherical boundaries) . + b +

 spherical symmetry (by gluing shells along boundaries)
r+1

— 2 45 45 23 23 4
Mfr WS - 4 — 2 , ,
3 3

(special) quantum states for spherical horizons:

- guantum states dependent on one condensate wave function for each shell

- conditions on quantum states, to have consistent interpretation as spherical horizons
 reduced density matrix associated to horizon shows holographic properties

horizon entropy:

. holography: entanglement entropy equal to its Boltzmann entropy ~ cOnstant fixed by thermodynamic consistency

a = <area> for each puncture
* entropy computed by counting number of possible horizon graphs | dependence on Immirzi parameter
. assuming maximal entropy, S’(“élH7 )\) ~ 2)\AH 4+ log (AH/CL) crucial role of GFT number Operator

logarithmic corrections depend on combinatorics



Holography and entanglement

entanglement in spin networks via GFT %o

92
several studies of entanglement properties of spin networks //-g/ ° \A %
() 0_ <=>
see talks by Livine, Riello i \— o — i i

91 92
gluing of GFT quanta ~ connectivity of space ~ entanglement o

11
h12

gauge invariant gluing ~ maximal entanglement G. Chirco. F. Mele. DO, P. Vitale, ‘17

various measures of entanglement, e.g. geometric entanglement via Fisher metric

GFT states, spin networks and tensor networks cmmTTm

see talks by Chirco, Zhang - 'K' i ‘/‘/ﬁ\ AN

GFT states are generalised (random) tensor network states \‘/‘/O
! N // Omin \\ \ \
I' I' SN\ v “ \\
- tensor at node generalised to 1-particle GFT wavefunction by N
LT 1 B
. . . . . I A 1 :l 1o :
- linking info in gluing kernels between GFT quanta Vo U !
| VoL | |

\ Voo / l,' II I

GFT dynamics provides measure on random tensor networks NN Sl

QG analogue of Ryu-Takanayagi entropy formula via GFT techniques /z\ .
G. Chirco, DO, M. Zhang, ‘17 Te.oe N - -~



Thank you for your attention!



