
Daniele Oriti


Max Planck Institute for Gravitational Physics 

(Albert Einstein Institute)


Loops17

Warsaw, Poland, EU


 03/07/2017

Group field theory: 
where from, where to



Plan of the talk

•  GFTs : what are they? 
• general formalism 

• GFTs and tensor models 
• GFT and LQG 
• GFT and spin foam models 

• current research directions 
• foundations of the GFT formalism 
• GFT renormalization 
• physical applications 

• GFT condensate cosmology 
• horizon entropy via GFT methods 
• entanglement, tensor networks and holography 



Part I: 
the GFT formalism

a) basic QFT elements, combinatorics 
and relation to tensor models



Group field theories
(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)

QFT of spacetime, not defined on spacetime a QFT for the building blocks of (quantum) space
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arguments of GFT field: bi 2 su(2)

e.g. discretised topological SU(2) BF variables (B-field and connection)

' : G⇥d ! CQuantum field theories over group manifold  G (or corresponding Lie algebra)

relevant classical phase space for “GFT quanta”: (T ⇤G)⇥d ' (g⇥G)⇥d

can reduce to subspaces in specific models depending on conditions on the field

example: d=4

d is dimension of  “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

'(g1, g2, g3, g4) $ '(b1, b2, b3, b4) ! C

Hv = L2
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Group field theories

very general framework; interest rests on specific models/use 
(most interesting QG models are for Lorentz group in 4d)

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)
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Fock vacuum: “no-space” (“emptiest”) state   | 0 >

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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'(g1, g2, g3, g4)$ '(B1, B2, B3, B4)! C

Group field theories

(d=4)

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@

Y

(i)

Z

[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂†(gia), (4)
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boson statistics is -assumption- 
(can construct, e.g., fermionic models)

a QFT for the building blocks of (quantum) space



Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)
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1
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a QFT for the building blocks of (quantum) space
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Group field theories

“combinatorial non-locality”

in pairing of field arguments

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common 
triangles, to form 4-simplex (“building block of spacetime”)

simplest example (case d=4): simplicial setting

specific combinatorics depends on model

a QFT for the building blocks of (quantum) space



Group field theories

“combinatorial non-locality”

in pairing of field arguments
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).

5

simplest example (case d=4): simplicial setting

specific combinatorics depends on model

a QFT for the building blocks of (quantum) space



Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices)

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

Group field theories
a QFT for the building blocks of (quantum) space
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Group field theories
a QFT for the building blocks of (quantum) space

sum over triangulations/complex amplitude for each 
triangulation/complex

model-dependent:

• class of complexes summed over

• expression of Feynman amplitudes



GFTs and tensor models

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data
purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations

(Ambjorn, Durhuus, Sasakura, …, Gurau, Rivasseau, Bonzom, Ryan, …..)
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dropping group/algebra data
(or restricting to finite group)example: d=3

Tijk : Z⇥3
N ! C

Tijk : X⇥3 ! C X = 1, 2, ..., N'(g1, g2, g3) : G
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Feynman diagrams are stranded graphs dual to 3d simplicial complexes
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GFTs and tensor models

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data
purely combinatorial amplitudes ~ lattice gravity path integrals on equilateral triangulations
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Quantum dynamics:

Z =
Z
DT e�S(T,�) =

X

�

�V�

sym(�)
Z� =

X

�

�V�

sym(�)
NF�� 3

2 V�

can be recast in terms of Regge action for gravity discretised on equilateral triangulation

purely combinatorial definition of quantum gravity



GFTs and tensor models
(Ambjorn, Durhuus, Sasakura, …, Gurau, Rivasseau, Bonzom, Ryan, …..)

crucial issue: analytical control on sum over graphs/complexes key tool: colouring

two (equivalent) implementations:

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G



GFTs and tensor models
(Ambjorn, Durhuus, Sasakura, …, Gurau, Rivasseau, Bonzom, Ryan, …..)

crucial issue: analytical control on sum over graphs/complexes key tool: colouring

two (equivalent) implementations:

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

4

Face gluing

Propagator

3-gem

FIG. 2. A gluing using a colored propagator.

III. A SURVEY OF GRAPH-EMBEDDED MANIFOLDS RESULTS

In this section we review some basic results in the field of 3-gems and make a dictionary between the two literatures,
as colored group field theory can gain much from the results obtained in all the years of research in such field.

Let � be a finite, edge-colored graph, parallel edges allowed. A k-residue of �, k ⇥ N is a connected compo-
nent of subgraph of � induced by k color classes (this is what in colored group field theory are called bubbles). These
graphs represent a piecewice linear manifold in the following sense (a pseudo-complex) [18]. A n-regular n-colored
graph is a couple (�, �)n where n denotes its degree. To a couple (�, �)n+1 there is an associated pseudo-complex
K(�) given by the following construction. Take an n-simplex ⇥n for each V (�) and label its vertices ⇥n. If x,y in
V (�) are joined by an edge, then attach the (n�1)-faces of their associated simplices. This is the same interpretation
given to attaching faces of n-simplices in a n-dimensional group field theory. We denote |�| the pseudo-complex
associated with the colored graph �.

Lemma 1 For any PL n-manifold M there exist a (n+1)-graph � such that |�| � M.

We now restrict to the case of 3-dimensions and list some of the basic results[15].

Let � be a 4-edge-colored 4-graph and denote by v, e, b, t respectively the number of vertices (0-residues), edges
(1-residues), 2-residues and 3-residues.

Definition A 3-gem (a 3 graph-embedded manifold) is a 4-regular properly edge-colored graph such that

v + t = b (5)

A 4-regular properly edge-colored graph for which (5) does not apply is called 3-gepm (a 3 graph-embedded pseudo-
manifold).

Lemma 2 A necessary and su⌅cient condition for the graph (�, �)4 to represent a manifold, is to meet the re-
lation between its 2- and 3- residues (read as it 2- and 3- colored bubbles) and the number of vertices (read as the
perturbative order) v + t = b.

This Lemma clarifies the reason why 3-gems have to satisfy the relation (5). Let now introduce few definitions
which will turn useful later[18]:

1) colouring tensors(GFT fields)
T a

ijk : Z⇥3
N ! C a = 0, 1, 2, 3
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GFTs and tensor models
(Ambjorn, Durhuus, Sasakura, …, Gurau, Rivasseau, Bonzom, Ryan, …..)

crucial issue: analytical control on sum over graphs/complexes key tool: colouring

two (equivalent) implementations:

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

2) colouring indices (field arguments) - new U(N)^d symmetry

interaction associated to coloured bubbles:

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d-colored graphs (d-bubble):

S(�,�) =
�

b�B

tbIb(�,�) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot � field (resp. complex
conjugate field);
edge of color ⌅ � convolution of ⌅-th indices of �
and �.

�
[dgi ]

12�(g1, g2, g3, g4)�(g1, g2, g3, g5)�(g8, g7, g6, g5)

�(g8, g9, g10, g11)�(g12, g9, g10, g11)�(g12, g7, g6, g4)

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions
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GFTs and tensor models
(Ambjorn, Durhuus, Sasakura, …, Gurau, Rivasseau, Bonzom, Ryan, …..)

crucial issue: analytical control on sum over graphs/complexes key tool: colouring

two (equivalent) implementations:

Every PL D-pseudomanifold M can be represented by a (D+1)-colored graph G

key results (2010 - ….):

1/N expansions

double scaling limits

phase transitions

……………………



Part I: 
the GFT formalism

b) quantum geometry and relation with 
LQG (and spin foam models)



Group field theories and Loop Quantum Gravity
kinematics: Hilbert space close to LQG one - same spin network dofs, but organised differently

H2 = lim
�

S
� H�

⇡ = L2
�Ā�

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵ab

ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h

'̂(~g) , '̂†(~g0)
i

= IG(~g,~g0)
⇥

'̂(~g) , '̂(~g0)
⇤

=
h

'̂†(~g) , '̂†(~g0)
i

= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@

Y

(i)

Z

[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂†(gia), (4)
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣

~J, ~m, I
⌘

!  ~�(~g) = h~g|~�i =
"

d
Y

a=1

DJa
mana

(ga)

#

CJ1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂†(g1, .., gd) ⌘ '̂†(~g) =
X

~�

'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:

\On,m ! h~�1, ...., ~�m|\On,m|~�0
1, ..., ~�

0
ni = On,m

�

~�1, ..., ~�m, ~�0
1, ..., ~�

0
n

�

!

! \On,m

⇣

'̂, '̂†
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .
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of states associated to closed graphs and such that, for each graph �, we have H� =
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(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
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The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
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⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an
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latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as
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with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L2(G⇥d): F(Hv) =
L1

V=0 sym
n⇣

H(1)
v ⌦H(2)

v ⌦ · · ·⌦H(V )
v

⌘o

, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
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i
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where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0
i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L

Ji2N/2 Inv
�

HJ1 ⌦ ...⌦HJ4
�

, where each HJi is the Hilbert space of an
irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�

'̂, '̂†�.
Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L2
⇣

GE/GV , dµ =
QE

e=1 dµ
Haar
e

⌘

(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µHaar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1
[�H�

⇡ . Of course, the
two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L2
⇣

(G⇥d/G)⇥V , dµ =
QV

v=1

Qd
i=1 dµ

v
Haar,i

⌘

, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵ab

ij �V (. . . , gia ↵
ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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gravity atom’ corresponding to a Hilbert space Hv = L2
�

G⇥d/G
�

. An orthonormal basis  ~�(~g) in
each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣

~J, ~m, I
⌘

!  ~�(~g) = h~g|~�i =
"

d
Y

a=1

DJa
mana

(ga)

#

CJ1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =
L1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂†(g1, .., gd) ⌘ '̂†(~g) =
X

~�

'̂†
~�  

⇤
~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:

\On,m ! h~�1, ...., ~�m|\On,m|~�0
1, ..., ~�

0
ni = On,m

�

~�1, ..., ~�m, ~�0
1, ..., ~�

0
n

�

!

! \On,m

⇣

'̂, '̂†
⌘

=

Z

[d~gi][d~g
0
j ] b'

†(~g1)..b'†(~gm)On,m
�

~g1, ..,~gm,~g01, ..,~g
0
n

�

b'(~g01)..b'(~g
0
n) .

Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:

bF | i ⌘
1
X

n,m

�n,m

2

4

X

{~�,~�0}
'̂†
~�1
...'̂†

~�m
Pn,m

�

~�1, ..., ~�m, ~�0
1, ..., ~�

0
n

�

'̂~�0
1
...'̂~�0

n
�

X

~�

'̂†
~�'̂~�

3

5 | i = 0

Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:

S
�

','†� = m2
Z

d~g '†(~g)'(~g) �

�
X

n,m

�n+m



Z

[d~gi] [d~g
0
j ] '

†(~g1)...'†(~gm) Vn+m
�

~g1, ...,~gm,~g01, ...,~g
0
n

�

'(~g01)...'(~g
0
n)

�

(7)
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Group field theories and Loop Quantum Gravity
(see also L. Freidel, ’06)
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:

S
�

','†� = m2
Z

d~g '†(~g)'(~g) �

�
X

n,m

�n+m



Z
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�
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0
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0
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =
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shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X
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hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
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This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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complete (formal) definition of SF model: 
set of all quantum amplitudes for all spin foam complexes (in the chosen class) + organization principle

spin foam model: sum over histories for LQG-like states (spin networks ~ quantum simplicial geometries)

quantum history = spin foam (complex with algebraic data)

need to specify: class of complexes + type of algebraic data J J

J

J

1
2

3

4

quantum amplitude for spin foam —-> quantum amplitude for spin foam complex 

Z(�) =
X

{J},{I}|j,j0,i,i0

Y

f
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e

Ae(J, I)
Y

v

Av(J, I){� }

Group field theories and spin foam models

Reisenberger, Rovelli, Baez, Barrett, Crane, Perez, DO, ……

different prescriptions available for “organization principle”



the GFT proposal:
spin foam model with sum over complexes as perturbative expansion of GFT (valid for any SF model)
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Group field theories and spin foam models

construction ambiguities and computational difficulties remain, 
but several advantages:

• precise and constrained prescription for combinatorial weights + way to parametrize SF ambiguities 
• QFT re-interpretation and techniques + ways to go beyond spin foams themselves 

(see talks by Speziale, Dona’, Finocchiaro) 



Group field theories, LQG and spin foam models
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GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus

Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks ~ covariant LQG)


• lattice gravity path integrals         

(with group+Lie algebra variables)

Reisenberger,Rovelli, ’00

A. Baratin, DO, ‘11
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same (defining a specific GFT model) is straightforward, at least at a heuristic level.
First of all, one has to find the 2nd quantised counterpart of the canonical dynamical operator.

This could be directly an Hamiltonian constraint or a ‘projection’operator bP onto solutions of the
Hamiltonian constraint equation, such that: bP | i = | i. When written as an operator on the
Fock space, such operator will decompose into operators whose action involves 2,3,...,(n+m) spin
network vertices, weighted by coupling constants. This decomposition may well involve an infinite
number of components, and beside symmetry conditions, the physical question is which terms in
this decomposition are actually relevant and whether higher order terms can be reduced to lower
order ones. For each (n,m)-body component of bP , we consider the matrix elements in a com-
plete basis of products of single-vertex states and construct the 2nd quantised projector operator
(choosing normal ordering), acting on the Fock space, constructed from GFT field operators as:

bF | i ⌘
1
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
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Part II: 
research directions



QG as GFT: new research directions

One possible concrete, and complete realisation of QG based on spin networks/simplicial geometry

Translating Quantum Gravity questions (e.g. from LQG or spin foams) into GFT offers new perspective

New tools from QFT become available thanks GFT embedding

in particular, it may become possible/easier to:

• define rigorously quantum statistical mechanics for QG degrees of freedom

• relate nicely canonical and covariant formulations

• study inequivalent representations and symmetries of QG system

• constrain quantum ambiguities via renormalizability

• define continuum limit and control macroscopic phase diagram

• extract effective continuum physics (GR + QFT + corrections)

• make contact with QG phenomenology



Part II: 
research directions

a) foundations of the GFT formalism



Foundations of group field theories

quantum statistical mechanics of spin networks (within GFT Fock space)

it entails understanding more rigorously:

• identification and encoding of QG (GFT) thermodynamic potentials 

• statistical implementation of quantum dynamical constraints

• QG notion of “equilibrium” (e.g. via KMS condition on abstract QG algebra)

• deparametrization wrt internal clock and recovering of standard quantum statistical mechanics

give precise meaning to:
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Even given the above GFT operator, the identification of the corresponding GFT action and
partition function has to proceed in a rather heuristic manner. One would like to define a partition
function Z for the canonical quantum LQG theory, that is for arbitrary states in the Fock space,
thus arbitrary collections of spin network vertices (including those associated to closed graphs).
The simplest choice would be an analogue of the microcanonical ensemble, in which only states
solving the canonical dynamical equation contribute: Zm =

P

shs| �( bF )|si, where s denotes an
arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory. The GFT
dynamics (of existing GFT models), however, corresponds to a quantum LQG dynamics of a more
general type, which amounts to a choice of a density operator of the grandcanonical type

Zg =
X

s

hs|e� ( bF �µ bN)|si ,

where the sign of the chemical potential µ determines whether states with many or few spin network
vertices are favoured. To rewrite the above partition function as a GFT path integral, we introduce
a basis of eigenstates of the GFT field operator:

Zg =
X

s

hs|e� ( bF �µ bN)|si =

Z

D'D' e� |'|2 h'| e� ( bF �µ bN) |'i .

This is a GFT path integral with quantum amplitude e� |'|2 h'| e� ( bF �µ bN) |'i ⌘ e�Seff where the
e↵ective action Seff is obtained from a classical action S0 as:

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~) .

Quantum corrections may amount to new interaction kernels or to a redefinition of the coupling
constants for the ones in S. For a given operator equation, then, the corresponding classical (and
bare) GFT action is of the form:
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N.B. related to problem of “generally 
covariant statistical mechanics”, 
including gravitational field

needed for rigorous relation between canonical (operator) and covariant (path integral) QG formulations

G. Chirco, I. Kotecha, M. Laudato, F. Mele, DO, in prep.

I. Kotecha, DO, to appear

see talk by Kotecha



Foundations of group field theories
symmetries, conservation laws and symmetry breaking

(at classical and quantum level) need to:

• generalise Noether framework 

• identify symmetries and conservation laws for interesting models

• adapt theory of symmetry breaking (to have more control over non-perturbative sector)

GFTs are non-local quantum field theories

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

“combinatorial non-locality”

in pairing of field arguments

A. Kegeles, DO, ’15, ‘16
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“combinatorial non-locality”

in pairing of field arguments

A. Kegeles, DO, ’15, ‘16

inequivalent representations of quantum GFT

need to:

• define carefully thermodynamic & continuum limits

• identify inequivalent representations (possibly corresponding to different phases of continuum theory)

like any (infinite-dimensional) quantum system, GFTs (as LQG) may have inequivalent realisations

A. Kegeles, DO, to appear

see talk by Kegeles (and Geiller for LQG perspective)



Part II: 
research directions

b) GFT renormalization:  
consistency and continuum limit



many construction and quantisation ambiguities in definition of GFT model 
(thus, many models) (LQG canonical constraint, spin foam amplitudes) - 

• exact way of imposing simplicity constraints in spin foam models 
• generalisations at combinatorial level (which complexes?)
• quantisation ambiguities (choice of quantisation map)
• quantum corrections and stability of spin foam amplitudes, divergences
• “measure” terms
• ……

EPRL,’07, Freidel-Krasnov, ’07, 
Baratin-Oriti, ’11, Dupuis-Livine, ‘11
Finocchiaro, DO, to appear

Alexandrov, ’10; Ding, Han, Rovelli, ’10; Guedes, DO, Raasakka, ‘12

background independent counterpart of issue of renormalizability in perturbative QG
Perez, ‘07

GFT renormalization: constraining ambiguities
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Z
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Issue 1: 

see talk by Finocchiaro



many construction and quantisation ambiguities in definition of GFT model 
(thus, many models) (LQG canonical constraint, spin foam amplitudes) - 

• exact way of imposing simplicity constraints in spin foam models 
• generalisations at combinatorial level (which complexes?)
• quantisation ambiguities (choice of quantisation map)
• quantum corrections and stability of spin foam amplitudes, divergences
• “measure” terms
• ……

EPRL,’07, Freidel-Krasnov, ’07, 
Baratin-Oriti, ’11, Dupuis-Livine, ‘11
Finocchiaro, DO, to appear

Alexandrov, ’10; Ding, Han, Rovelli, ’10; Guedes, DO, Raasakka, ‘12

background independent counterpart of issue of renormalizability in perturbative QG
Perez, ‘07

translating in QFT perspective:

• GFT perturbative renormalization 
—-> renormalizability of GFT model (spin foam amplitudes) 
= existence of consistent dynamics for (at least) a wide range of scales

see talk by Carrozza

GFT renormalization: constraining ambiguities
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GFT renormalization: continuum limit
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Issue 2: controlling quantum dynamics of more and more interacting QG degrees of freedom 

control quantum dynamics for boundary states involving (superpositions of) large graphs
compute spin foam amplitudes for finer complexes and corresponding sum over complexes 
up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations 

need control over theory space 
expect different phases and phase transitions as result of quantum dynamics
(what are the phases of LQG?) Koslowski, ’07; DO, ‘07

see talk by Dittrich for lattice spin foam perspective



translating in QFT perspective:

• GFT non-perturbative renormalization 
——> computing RG flow of quantum dynamics 
——> defining full GFT partition function (spin foam amplitudes) without cut-offs
= definition of full continuum theory and identification of macroscopic phases

see talk by Carrozza

GFT renormalization: continuum limit
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Issue 2: controlling quantum dynamics of more and more interacting QG degrees of freedom 

control quantum dynamics for boundary states involving (superpositions of) large graphs
compute spin foam amplitudes for finer complexes and corresponding sum over complexes 
up to infinite refinement (infinite number of degrees of freedom), at least in simple approximations 

need control over theory space 
expect different phases and phase transitions as result of quantum dynamics
(what are the phases of LQG?) Koslowski, ’07; DO, ‘07

see talk by Dittrich for lattice spin foam perspective



GFT renormalisation - general scheme

general strategy: 
treat GFTs as ordinary QFTs defined on Lie group manifold 
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:   
  defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

• need to have control over “theory space” (e.g. via symmetries)

• main difficulty:
controlling the combinatorics of GFT Feynman diagrams and interactions to control RG flow and divergences 
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, ….. 

A. Kegeles, DO, ’15,’16



GFT perturbative renormalisation
recent results:

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

PERTURBATIVE GFT RENORMALIZATION

radiative corrections to the GFT 2-point function of the BF GFT models

Ben Geloun, Bonzom, arXiv:1101.4294 [hep-th]

g1

g2
g3

g′1
g′2
g′3

h1

h2

h3

two leading divergences:
a mass renormalization

a divergence proportional to the second derivatives of the propagator

this needs to be balanced by a new counter-term in the GFT Boulatov action:

m2
Z

[dg]φ(g1, g2, g3) →

Z
[dg]φ(g1, g2, g3)

"
3X

i=1

∆i + m2

#

φ(g1, g2, g3)

similar (and higher) derivative divergences in higher dimensions
BF GFT model could be fixed point of more general GFT dynamics - attractive or
repulsive? role of symmetries? - see Bianca’s talk

analogous calculations for EPRL model (Perini, Roveli, Speziale, arXiv:0810.1714 [gr-qc])

need to tackle intensively all 4d gravity models!!!

perturbative GFT renormalization vs renormalization of discrete gravity?

what is the relevant notion of locality, if any? (Rivasseau, arXiv:1103.1900 [gr-qc])

32 / 41

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Graphs

The amplitudes are indexed by (d + 1)-colored graphs, obtained by
connecting d-bubble vertices through propagators (dotted, color-0 lines).
Example: 4-point graph with 3 vertices and 6 (internal) lines.

Nomenclature:
L(G) = set of (dotted) lines of a graph G.
Face of color (0�) = connected set of (alternating) color-0 and color-� lines.
Fint(G) (resp. Fext(G)) = set of internal (resp. external) i.e. closed (resp.
open) faces of G.

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

A class of dynamical models with gauge symmetry
General properties of amplitudes

Multi-scale analysis
Application to U(1), d = 4 models

Locality as tensor invariance

Assume S is a tensor invariant, because:
combinatorial control over topologies
analytical tool: 1/N expansion
universal properties

More precisely, assume S to be a finite sum of connected tensor
invariants, indexed by d-colored graphs (d-bubble):

S(�,�) =
�

b�B

tbIb(�,�) .

d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.
Correspondence with tensor invariants:

white (resp. black) dot � field (resp. complex
conjugate field);
edge of color ⌅ � convolution of ⌅-th indices of �
and �.

�
[dgi ]

12�(g1, g2, g3, g4)�(g1, g2, g3, g5)�(g8, g7, g6, g5)

�(g8, g9, g10, g11)�(g12, g9, g10, g11)�(g12, g7, g6, g4)

Sylvain Carrozza Renormalization of Tensorial Group Field Theories: U(1) Models in Four Dimensions

towards renormalizable 4d gravity simplicial GFT models:
• calculation of some radiative corrections

• finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term)

• renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

-> with gauge invariance 
—> non-abelian ( SU(2) )
——> non-abelian SU(2) model beyond melonic sector
———> SO(4) or SO(3,1) with simplicity constraints: first steps
————> generic asymptotic freedom/safety

T. Krajewski et al., ’10; A. Riello, ’13; Bonzom, Dittrich, ’15; …. ; M. Finocchiaro, DO, ’17 

Ben Geloun, Bonzom, ’11; Ben Geloun, ‘13

Ben Geloun, Rivasseau, ’11
Carrozza, DO, Rivasseau, ’12. ‘13

Lahoche, DO, ’15; Carrozza, Lahoche, DO, ‘17

Ben Geloun, ’12; Carrozza, ’14; Carrozza, Lahoche, ‘16

see talk by Carrozza

see talk by Finocchiaro



GFT non-perturbative renormalisation
two directions: 

• GFT non-perturbative renormalization and “IR” fixed points (e.g. FRG analysis - e.g. a la Wetterich

• GFT constructive analysis

non-perturbative resummation of perturbative (SF) series
variety of techniques: • intermediate field method

• loop-vertex expansion
• Borel summability

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Ousmane-Samary, Duarte, ….

Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, …..

+ 

many results in simpler tensor models
see talk by Carrozza



GFT non-perturbative renormalisation
recent results:

FRG for (tensorial) GFT models (similar to matrix/tensor models but distinctively field-theoretic)
Eichhorn, Koslowski, ‘14
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FIG. 4. The flow diagram at small N . The blue dot is the GFP, while the red one is the NGFP at {m̄⇤, �̄⇤}. Ordinary
trajectories are in blue, while the eigen-perturbations for the GFP are in green and those for the NGFP are in brown. Arrows
point towards the UV, i.e. growing N .

However, we should stress that such NGFPs were obtained from di↵erent rescaling of �, and going back to the
original coupling via (38), we notice that for N ! 0 the NGFP (41) corresponds to �⇤ = 0, while the one in (28) was
at �⇤ 6= 0.

This observation could also explain the integer critical exponents. Even though m̄N and �̄N have a nontrivial fixed
point, the scaling (24) and (38) implies that at such fixed point the renormalised mass and the renormalised coupling
(i.e. their value in the limit N ! 0) are zero. Once again, modulo an exchange in the scaling dimensions of mass
and coupling, the same conclusion can be reached for the standard Wilson-Fisher fixed point in three dimensions.
However, in such a case we can easily study higher-order truncations, and find that also the coupling g

6

of the �6

interaction reaches a fixed point, and being g
6

dimensionless in d = 3, it remains finite also as we remove the IR
cuto↵. That the Wilson-Fisher fixed point theory is truly an interacting one, can also be inferred more reliably from
the local potential approximation or the next orders in the derivative expansion [38]. In the Tensorial GFT case, on
the other hand, we are not able to do a full local potential approximation, but from our truncation we can easily
guess that the IR scaling dimension for the coupling of a general interaction is (B.8) with ↵ = 0, and hence all such
couplings would flow to zero at an IR fixed point. The non-trivial fixed point is really a trivial one in disguise. We
also notice that such scaling dimensions for the couplings are the one we would get for standard couplings in zero
dimensions, where we expect no phase transition and no non-trivial fixed point.

Figure 4 might seem to contradict such expectation at first, but in fact a similar flow diagram is found by analytically
continuing the usual beta equations to d = 0 (which in fact have the same structure as (39)-(40)). The explanation of
the apparent paradox is again found by remembering that in the broken phase we should better use a more appropriate
truncation, such as V (�) = �(�2 � �2

0

)2. Then one finds that in zero dimensions the non-trivial fixed point is IR
attractive for both � and �2

0

, and it lies at �2

0

< 0, meaning that actually there is always symmetry restoration in
the deep IR. Although we cannot at the moment repeat this analysis from scratch in the Tensorial GFT case, the
similarity of the equations in the symmetric case, together with the scaling argument, give us confidence that the
same is true here.

The fact that the zero modes surviving in the deep IR lead to an e↵ective zero-dimensional theory is very reminiscent
of what observed in [57] for scalar field theory on a spherical background. Just like in that case, also in our case we
can trace back the origin of such phenomenon to the compactness of the background space, which in [57] was Sd,
while here is (S1)d ' T d.

All in all, for a quantum field theory on a compact space we would not expect a phase transition, on general grounds,
and our results seem to confirm this in the Tensorial GFT case as well, and the apparent NGFP is most likely an

generically (so far):
two FPs (Gaussian-UV, Wilson-Fisher-IR) 
asymptotic freedom
one symmetric phase
one broken or condensate phase
(non-trivial minimum of classical potential)

• Polchinski formulation based on SD equations
• general set-up for Wetterich formulation based on effective action

• analysis of TGFT on compact U(1)^d
• RG flow and phase diagram established

• analysis of TGFT on non-compact R^d
• RG flow and phase diagram established

• analysis of TGFT on non-compact R^d with gauge invariance
• RG flow and phase diagram established

• analysis of TGFT on SU(2)^3     Carrozza, Lahoche, ‘16

Benedetti, Ben Geloun, DO, ’14 ; Ben Geloun, Martini, DO, ’15, ’16, 
Benedetti, Lahoche, ’15; Ben Geloun, Duarte, Koslowsk, DO, to appear

Krajewski, Toriumi, ‘14

Carrozza, Lahoche, DO, ‘17

see talk by Carrozza



Part II: 
research directions

c) extracting effective continuum physics



Part II: 
research directions

c) extracting effective continuum physics

advantages of GFT formalism:

control over (large) superpositions of spin network states via 2nd quantised formalism

new (QFT) analytic tools for control over sum over complexes in quantum dynamics

bypassing (some) conceptual issues by adapting QFT tools



• few “macroscopic” observables, of “global” nature (understood as suitably defined averages 
over fundamental degrees of freedom, e.g. inhomogeneities, microscopic dofs, …)

• close to equilibrium

• insensitive to (or not too much affected by) microstructure

GFT condensate cosmology
Cosmology from QG perspective see talk by Wilson-Ewing for LQC perspective
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Quantum Gravity hydrodynamics
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• few “macroscopic” observables, of “global” nature (understood as suitably defined averages 
over fundamental degrees of freedom, e.g. inhomogeneities, microscopic dofs, …)

• close to equilibrium

• insensitive to (or not too much affected by) microstructure

hydrodynamics regime!

GFT condensate cosmology
Cosmology from QG perspective

what could be the relevant hydrodynamic observables in QG?
simple averages of “one-body” observables, extensive in the “number of atoms of space”
e.g. the total volume V of space, if each “atom of space” gives a contribution to it

what would key hydrodynamic quantities look like in QG?
one key hydrodynamic quantity would be reduced “one-body” density,
i.e. some function on the space of data associated with a single “atom of space”

cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it

cosmology as 

Quantum Gravity hydrodynamics

see talk by Wilson-Ewing for LQC perspective



problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc] …………….

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

GFT condensate cosmology
see talk by Gielen

http://arxiv.org/abs/arXiv:1303.3576
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
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occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
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This criterion only uses intrinsic geometric data and does
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if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state

GFT condensate cosmology
see talk by Gielen
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problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc] …………….

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
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) = 0 . (23)

•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state

special states with (plausible) continuum geometric interpretation:
infinite dofs, such that, if one tries to reconstruct continuum geometry from them, one obtains same geometric 
data at each “point”, i.e. homogeneous spatial (quantum) geometry (still, fully diffeo-invariant)

GFT condensate cosmology
see talk by Gielen

http://arxiv.org/abs/arXiv:1303.3576


problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc] …………….
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
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leading to the quantum equation of motion
⌅
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�V̂5

�⇧̂(gI)
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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•  simplest
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superposition of infinitely many spin networks dofs, 
“gas”of tetrahedra, all associated with same state 

e.g. (simplest): GFT field coherent state

described by single collective wave function 
(depending on homogeneous anisotropic geometric data)

� (D) D ' {geometries of tetrahedron} '
' {continuum spatial geometries at a point} '
' minisuperspace of homogeneous geometries

start with fundamental (Fock) space of GFT states (arbitrary collections of tetrahedra labelled by SU(2) data

GFT condensate cosmology
see talk by Gielen

http://arxiv.org/abs/arXiv:1303.3576


problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

problem 2:

extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum homogeneous (quantum) spaces

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

infinite superposition of Feynman diagrams 
(infinite sum over discrete “spacetime” lattices)

equation for “condensate wave function”: 
Z

[dg0i] K̃(gi, g
0
i)�(g0i) + �

�Ṽ
�'(gi)

|'⌘� = 0

similar to quantum cosmology, but: no Hilbert space structure (no superposition of “states of universe”, no “collapse of 
wavefunction”) - “statistical nature” of wavefunction; still, fluctuations of geometric quantities

described by single collective wave function (1-particle density) 

(depending on homogeneous anisotropic geometric data)

GFT condensate cosmology
see talk by Gielen

http://arxiv.org/abs/arXiv:1303.3576


problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

problem 2:

extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum homogeneous (quantum) spaces

following procedures of standard BEC

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs 

is


non-linear extension of quantum cosmology equation for collective wave function

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
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summary of recent results:

S. Gielen, ’14, ’15, ’16; G. Calcagni, ‘14

• general scheme, geometric interpretation and effective dynamics

• generalised condensate states (also for spherical black holes)

• lattice refinement and GFT cosmological observables

• relation with LQC

• effective cosmological dynamics from EPRL model

• generalised Friedmann equations

• generic big bounce resolution of classical singularity

• reduction to LQC dynamics

• effect of GFT interaction in emergent cosmological dynamics

• long-lasting acceleration after bounce (no inflation)

• non-normalisable condensate states (hints of GFT phase transition?)

• first analysis of dynamics of anisotropies

• cosmological perturbations
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Quantum horizons in full QG via GFT
GFT allows to go beyond (symmetry-reduced) models and control continuum states involving large 
superpositions of spin networks (also using tensorial techniques, e.g. colouring and dipole moves)

generalised GFT condensate states for arbitrary topology:

• obtained from initial “seed” graph by action of “refinement operators”

• homogeneous shell (two spherical boundaries)

• spherical symmetry (by gluing shells along boundaries)

2

open radial links of each boundary have the same color,
di↵erent for the two boundaries. In order to glue shells
together, and still be able to distinguish di↵erent shells,
we add a label r 2 N to the shell wave-function, which
e↵ectively plays the role of a radial coordinate. Two
shells r and r + 1 are then glued together through their
radial links as schematically depicted here

r+1

r

.

The idea of GFT condensation posits that the same
wave-function � should be associated to each new GFT
excitation introduced in the state. This notion of wave-
function homogeneity for each shell captures the coarse
grained homogeneity of continuum geometric data [3].
Our construction relies on the operatorial version of
GFT, which provides a second quantization formalism
for LQG [2]. The main advantage of this formulation
is that it allows us to introduce a Fock space structure
in the description of spin network states. More precisely,
the field ladder operators for the vertex v are constructed
from the original GFT field creation/annihilation opera-
tors satisfying the bosonic commutation relations:
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and having a graph-theoretic interpretation as opera-
tors creating or destroying 4-valent vertices. From these,
we can then define field operators encoding the wave-
function associated to the vertices and incorporating the
vertex homogeneity idea. More precisely, we introduce
the transformed fields
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Here we have defined the left invariant Dirac delta,
appearing due to gauge invariance properties of
the operators wave-function, as: �

L

(hv

I

, hw

I

) =R
SU(2) d�

Q4
I=1 �(�h

v

I

(hw

I

)�1). The choice of the factor
�
r,r

0 in the commutator is crucial: it implies that oper-
ators associated to di↵erent shells commute with each
other. The commutator (3) was introduced in [3] for
technical reasons, but we will show that it encodes cru-
cial physical properties, as the form of (3) is at the origin
of the holographic nature of our states.

All the non-radial links departing from the 4-valent
vertices forming a given shell are glued among each other,
through the convolution of group field arguments, so to
construct 4-regular graphs associated to the Fock space
states. This gluing is mirrored in the dual by the gluing
of tetrahedra to construct a three-dimensional simplicial
shell topology. A full spatial foliation can then be formed
by glueing all the radial links of the outer boundary of
the shell r with the (same number of) radial links of the
inner boundary of the shell r+1. Both sets of links must
have the same color. We are not going to explicitly define
a refinement operator for the glued shells, as it plays no
role in our entropy calculations (but see [3] for the tools
used in the construction). The general expression for the
full states that we are interested in, then, is of the type:
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is a function of the refinement operators cM
r,t

of a given shell r. The seed state is constructed out of
the graph with the minimal number of vertices neces-
sary to encode the desired shell topology (the explicit
form is given in [3]). For a given shell r, the oper-

ators cM
r,t

comprise the sum of three terms, namely
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s={+,0,�}
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, each refining separately one
part of the shell. These are examples of closed graph-
labeled operators, constructed out of simple convolutions
of three creation and one annihilation operators encoding
the triangulation of a ball. For instance, in the case of
t = B, s = +,� with the arbitrary choice of radial links
having color 1 (to which we associate the identity group
element h1 = e), we have
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dipole insertion in the given component s of the shell
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The form of the function f
r

amounts to fixing the co-
e�cients of the linear combination of graphs, i.e. com-
ponents with a fixed number of particles, appearing in
the decomposition of the full shell state. This choice
does not a↵ect the leading term in the entropy calcu-
lation performed below, where we make one that keeps
to a minimum the additional parameters controlling the
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The form of the function f
r

amounts to fixing the co-
e�cients of the linear combination of graphs, i.e. com-
ponents with a fixed number of particles, appearing in
the decomposition of the full shell state. This choice
does not a↵ect the leading term in the entropy calcu-
lation performed below, where we make one that keeps
to a minimum the additional parameters controlling the

(special) quantum states for spherical horizons: 
• quantum states dependent on one condensate wave function for each shell
• conditions on quantum states, to have consistent interpretation as spherical horizons
• reduced density matrix associated to horizon shows holographic properties 

horizon entropy:

• holography: entanglement entropy equal to its Boltzmann entropy

• entropy computed by counting number of possible horizon graphs 

• assuming maximal entropy,  

5

single-plaquette a, to the total area A = an (and the de-
generacy factor �(a) only contributes a constant shift).
It should be stressed that the structure of the result holds
for any spherically symmetric state, as we have not yet
discussed extra horizon conditions. This also implies that
there is no reason, yet, to require matching with the
Bekenstein–Hawking entropy, i.e. requiring our states to
give a specific value for a. Notice that area laws for the
entanglement entropy for any smooth closed codimension
two surface emerge in various situations [11]. In this sense
the commutation relations (3) acquire a physical mean-
ing, ensuring consistency between the quantum features
of our GFT condensates and expected properties of clas-
sical smooth geometries, confirming their interpretation.

Let us emphasize a crucial point in order to fully appre-
ciate the result (14). In our analysis we take into account
both the single-vertex Hilbert space DOF, as well as com-
binatorial DOF encoded in the sum over all the graphs,
both in the boundary and in the bulk. When considering
a non-perturbative state with possibly an infinite num-
ber of DOF, like in our analysis, it is far from obvious
that the expected physical properties, from a perturba-
tive analysis point of view, remain valid. In the case of
the entanglement entropy of the reduced density matrix
obtained when summing over all the boundary and bulk
graphs, the scaling behavior with the area, even when
valid for a given graph as shown in [6, 10], is not an
obvious physical property at all in a context of random
geometries [12]. To proceed beyond this point one should
use the equations of motion to determine n, a,�(a), not
fixed by the defining properties of the condensate states
alone. Even without the exact dynamics, we can make
significant progress by imposing horizon boundary con-
ditions. As pointed out above, we have two possibilities.

Using the IH boundary condition would a priori intro-
duce an extra dependence of the degeneracy � on the
total horizon area AH , as this enters the resulting con-
straint on the vertex wave-function �. The area law,
then, is not guaranteed and one needs a detailed anal-
ysis of the space of constrained �s. This would be a
highly nontrivial task. We use instead a maximum en-
tropy principle, and we determine the values of a, n,�(a)
for the most generic state compatible with a fixed macro-
scopic value of AH . Compatibly with the semiclassicality
conditions stated above, we consider condensate states
such that n is large and, consequently, a is small. In-
troducing the area constraint, we look for extrema of
⌃(n, a,�) = S(n, a) + � (AH � 2an), when varying with
respect to a, n,�. Let us point out that, if �(a) was
known explicitly, then the system of equations would
fully determine the free parameters a, n,� as functions of
AH and the microscopic parameters of the theory. This
not being the case, we use one of the equations to de-
termine �(a), thus leaving the final result dependent on
the Lagrange multiplier �. More precisely, we obtain
a = log(2)/�,� = c0 exp (�AH), where c0 is an irrele-

vant integration constant. As a result, the entropy is

S(AH ,�) ⇠ 2�AH + log (AH/a) . (15)

We obtained the desired area law from first principles.

From the entropy result (15) we recover the semiclas-
sical entropy formula by setting the Lagrange multiplier
� = 1/8`2P . Within our working assumption about the
compatibility of the classical dynamics with our hydro-
dynamical approximation of GFT, this last step can be
interpreted as a thermodynamical consistency condition.
More precisely, exploiting the continuum (and semiclas-
sical) geometric interpretation of our states, the value of
� above yielding the factor of 1/4 in the area law is ob-
tained from the compatibility with the thermodynamic
relation � = @S/@E, where � is the horizon tempera-
ture and E its energy, which implies convergence between
macroscopic GR dynamics and e↵ective equations of mo-
tion derived from the GFT dynamics (see [13] for a mi-
croscopic derivation of the Unruh temperature for a local
Rindler horizon).
Let us clarify an important aspect of this final result.

The value of � yielding the correct semiclassical result
implies a = log(2)8`2P , which is also consistent with our
semiclassicality condition of a small, i.e. large n limit.
The (average) area a for a single-vertex can be computed
for each specific choice of our microscopic GFT conden-
sate states. The agreement with this precise value is then
a constraint selecting those states, among those solving
also the dynamics of the theory, which admit a good semi-
classical interpretation. In this way, the (implicit) depen-
dence of a on the Immirzi parameter does not imply that
the Bekenstein–Hawking formula is recovered only for a
specific choice of �. On the contrary, the leading term in
the semiclassical entropy result remains explicitly inde-

pendent on �. This is a striking consequence of the GFT
formalism. More precisely, the availability of a number
operator (a purely GFT observable), and the possibility
to construct and control condensate states incorporating
a large (possibly infinite) superposition of graphs, rather
than simple area eigenstates, represent key improvements
over similar calculations in canonical LQG. The standard
LQG calculation (with its dependence on �) would be
recovered for very special condensate states which are
eigenstates of the horizon area.

Remarks.—We notice that `P , appearing in the entropy
through �, is going to be a function of the microscopic
parameters of the theory, i.e. its dynamical coupling con-
stants. These, in turn, are subject to renormalization in
going from the microscopic definition of the theory to the
e↵ective continuum (and semiclassical) regime. To deter-
mine the flow of such parameters is an active direction of
current research in GFT [14].
Finally, let us point out that the coe�cient in front of

the logarithmic correction depends directly on the form of
the refinement operators in the microscopic definition of

constant fixed by thermodynamic consistency
a = <area> for each puncture
no dependence on Immirzi parameter
crucial role of GFT number operator
logarithmic corrections depend on combinatorics 

DO, D. Pranzetti, L. Sindoni, PRL, ‘15

see talk by Pranzetti



Holography and entanglement
entanglement in spin networks via GFT

GFT states, spin networks and tensor networks

GFT states are generalised (random) tensor network states

• tensor at node generalised to 1-particle GFT wavefunction 

• linking info in gluing kernels between GFT quanta

GFT dynamics provides measure on random tensor networks

QG analogue of Ryu-Takanayagi entropy formula via GFT techniques
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Figure 2. Gluing of open spin network vertices to form a spin
network closed graph.

which are called open spin network vertices.
Given a closed d-valent graph � with V vertices specified
by L(�), a cylindrical function  � can be obtained by
group averaging a wave function '
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in such a way that each edge is associated with two group
elements g

a
i , g

b
j 2 G. The integrals over ↵ operate a “glu-

ing” of the open spin network vertices corresponding to
', pairwise along common links, thus forming the closed
spin network represented by the closed graph �. Such
a gluing can be interpreted as a symmetry requirement.
Essentially, what we are saying is that we impose the
function ' to depend on the group elements g

a
i , g

b
j only

through the combination g

a
i (g

b
j)

�1
= h

ab
ij which is invari-

ant under the group action, by the same group element,
at the endpoint of two open edges to which these group
elements are associated as showed in Fig. 2 for the sim-
ple example of the tetrahedral graph. This shows that,
only using functions ', it is always possible to construct
a generic function  with all the right variables and sym-
metry properties, i.e., the space of functions  is a subset
of the space of functions '.
Moreover, using the Peter-Weyl decomposition theorem,
we can give the corresponding formula in the spin rep-
resentation which expresses the gluing of open spin net-
work vertices and defines cylindrical functions for closed
graphs as special cases of functions associated to a given
number of them. Indeed, a cylindrical function  � can
be decomposed as
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where

• J

ab
ij label the representations of the group G and

D

(J) are the corresponding representation matrices
whose indices refer to the start and end vertex of
the edge [(ia)(jb)] to which the group element h

ab
ij

is attached;

• C

{J},I are the normalized intertwiners for the
group G, attached in pairs to the vertices, result-
ing from the gauge-invariace requirement, a basis of
which is labelled by additional quantum numbers
I. These intertwiners contract all indices of both
nodes and of the representation functions, leaving
a gauge-invariant function of spin variables only.

By using a similar decomposition for the function ', the
group averaging expression of  in terms of ' can be
written as
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from which, comparing with (31), we get the gluing for-
mula in spin representation

 

{Jij},Ii
=

X
{~m}

'

~Ji,Ii

~mi

Y
[(ia)(jb)]

�Ja
i ,Jb

j
�ma

i ,mb
j

. (33)

This means that LQG states can be regarded as linear
combinations of disconnected open spin network states
with additional conditions enforcing the gluing and en-
coding the connectivity of the graph. Explicitly, Eq. (33)
shows that such conditions basically correspond to insert
intertwiners given by the identity map at the bivalent
vertices where the open links are pairwise glued.
In order to deal with graphs with an arbitrary number of
vertices, we consider the Hilbert space

H =

1M
V =0

HV . (34)

Eq. (30), or equivalently (32), shows that there is a
correspondence between LQG states and states in H.
This is actually more than a correspondence at the
level of sets of states since it is possible to prove that
the scalar product in HV for the special class of states
corresponding to closed graphs induces the standard
LQG kinematical scalar product for cylindrical functions
 � 2 H� based on a fixed graph (see [46] for details).
This means that, assuming that the graph � has V

vertices, H� can be embedded into HV faithfully, i.e.,

several studies of entanglement properties of spin networks

gluing of GFT quanta ~ connectivity of space ~ entanglement

gauge invariant gluing ~ maximal entanglement

various measures of entanglement, e.g. geometric entanglement via Fisher metric

Figure 5. The pattern with only the minimal surface �min. Boundary condition: A = F(A) and
B = 1(B).

F(A) and 1(B), respectively.
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D2L�L
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�
1 +O(D�1)
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(3.34)

6. The main contribution of ET (Z
(2)

0

) is the pattern without any domain walls. This is

because its boundary condition is 1(A) = 1(B) = 1
00

. There exist the pattern without

any domain wall and all nodes are assigned with 1
00

. Then

ET (Z
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) =
1
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2

D2L
�
1 +O(D�1)

�
(3.35)

Figure 6. The pattern without the minimal surface. Boundary condition: A = 1(A) and B = 1(B).

The leading contribution of S
2

is given as

ET (e
�S

2) ⇠ ET (Z
(2)

A )

ET (Z
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)
= D�L

min

�
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�
(3.36)

when D � 1,

S
2

= L
min

lnD +O(D�1) (3.37)
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