
Black Hole Bounce

Parampreet Singh

Louisiana State University

Loops 17

Warsaw University

Based on works with Alex Corichi, Gaurav Khanna, Javier Olmedo,

Sahil Saini and Alec Yonica

1 / 17



Outline

How much do we understand singularity resolution in loop
quantum black hole spacetimes and the resulting physics in
contrast to cosmological spacetimes (LQC)?

Classical setting of Schwarzschild interior and different
quantization strategies.

A quantization of the interior, free of various problems.

First results from stability and numerical simulations.

Phenomenology from a concrete quantization of black hole
interior. Consequences of Weyl causing classical singularity
and the resulting asymmetric bounce.

Can we engineer a symmetric bounce?
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Progress so far in Loop Quantum Cosmology

• Rigorous quantization of various spacetimes performed. Detailed
understanding of different quantization prescriptions. Improved
dynamics is the only viable choice in isotropic models.

• Stability of quantum Hamiltonian difference eq well understood.

• Quantum bounce in isotropic FRW in presence of massless
scalar, radiation, ±Λ and spatial curvature. Ongoing attempts to
include potentials. Inhomogenities included in hybrid approach.

• Quantum bounces established rigorously in vacuum Bianchi-I
spacetime using high performance computing. (Pawlowski’s talk)

• Effective dynamics verified extensively. Rich phenomenology.
Insights on generic singularity resolution. Signatures in CMB
explored. (Talks by Martineau, Olmedo, Wang, Wilson-Ewing)

(Agullo, Ashtekar, Barrau, Brizuela, Bodendorfer, Bojowald, Calcagni, Cartin, Campiglia, Chiou, Corichi, Craig,

Dapor, Date, Diener, Engle, Fleischhack, Grain, Gupt, Hanusch, Henderson, Hossain, Joe, Kaminski, Kagan,

Karami, Koslowski, Khanna, Lewandowski, Ma, Maartens, Martin-Benito, Martin-de Blas, Megevand, Mena

Marugan, Mielczarek, Montoya, Nelson, Olmedo, Pawlowski, PS, Puchta, Rovelli, Sakellariadou, Sahlmann,

Saini, Sloan, Szulc, Taveras, Thiemann, Tsujikawa, Vandersloot, Varadarajan, Vidotto, Willis, Wilson-Ewing, ...)

3 / 17



Progress so far on loop quantization of black holes

Many complexities going beyond cosmological setting.
Various careful constructions show that central singularities in black
holes can be eliminated. Interesting implications for black hole
evaporation, Hawking radiation, shell collapse etc. (Gambini’s talk)

(Ashtekar, Bojowald (06); Modesto (06); Bojowald, Swirdeski (06); Boehmer, Vandersloot (07); Campiglia,

Gambini, Pullin, Olmedo, Rastgoo (07-16)); Corichi, PS (16))

• Singularity resolution argued via properties of difference equation.
No numerical simulations and so far no evidence of bounce.

• Stability of quantum difference equation not well understood.

• Consistent viable quantization?

• Not much known on bounces even in effective dynamics.

• Connection to phenomenology from related works remains
unexplored (mass gap, Choptuik scaling, observable signatures)

(Hajiceck, Kiefer (01); Bojowald, Goswami, Maartens, PS (05); Husain, Winkler (06); Goswami, Joshi, PS

(06); Ziprick, Kunstatter (10); Kreienbuehl, Husain, Seahra (12); Tavakoli, Marto, Dapor (14); Barcelo,

Carballo-Rubio, Garay, Jannes (11-15); Barrau, Bolliet, Christodoulou, Haggard, Perez, Rovelli, Speziale,

Vidotto,... (14-16))
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Questions we are interested in this talk

• Is there a consistent non-singular viable quantization of the
Schwarzschild interior which is free from dependence of the fiducial
structures and has GR in infra-red limit?
(Corichi, PS (16))

• Is the resulting quantum difference equation stable? If yes, can
we understand singularity resolution at the full quantum level using
numerical simulations?
(Yonica, Khanna, PS (in progress))

• Given a concerete QG model can we extract detailed
phenomenology of BH to WH transition?
(Corichi, PS (appearing soon))

• Schwarzschild interior is Kantowski-Sachs vacuum. Highly
anisotropic singularity implies in general asymmetric bounce. In
some studies probing QG effects in collapse, such as Planck stars,
a symmetric bounce is considered as in isotropic models with a
Ricci (instead of Weyl) dominated singularity.
Is a symmetric bounce possible? (Olmedo, Saini, PS (appearing soon))

5 / 17



Questions we are interested in this talk

• Is there a consistent non-singular viable quantization of the
Schwarzschild interior which is free from dependence of the fiducial
structures and has GR in infra-red limit?
(Corichi, PS (16))

• Is the resulting quantum difference equation stable? If yes, can
we understand singularity resolution at the full quantum level using
numerical simulations?
(Yonica, Khanna, PS (in progress))

• Given a concerete QG model can we extract detailed
phenomenology of BH to WH transition?
(Corichi, PS (appearing soon))

• Schwarzschild interior is Kantowski-Sachs vacuum. Highly
anisotropic singularity implies in general asymmetric bounce. In
some studies probing QG effects in collapse, such as Planck stars,
a symmetric bounce is considered as in isotropic models with a
Ricci (instead of Weyl) dominated singularity.
Is a symmetric bounce possible? (Olmedo, Saini, PS (appearing soon))

5 / 17



Questions we are interested in this talk

• Is there a consistent non-singular viable quantization of the
Schwarzschild interior which is free from dependence of the fiducial
structures and has GR in infra-red limit?
(Corichi, PS (16))

• Is the resulting quantum difference equation stable? If yes, can
we understand singularity resolution at the full quantum level using
numerical simulations?
(Yonica, Khanna, PS (in progress))

• Given a concerete QG model can we extract detailed
phenomenology of BH to WH transition?
(Corichi, PS (appearing soon))

• Schwarzschild interior is Kantowski-Sachs vacuum. Highly
anisotropic singularity implies in general asymmetric bounce. In
some studies probing QG effects in collapse, such as Planck stars,
a symmetric bounce is considered as in isotropic models with a
Ricci (instead of Weyl) dominated singularity.
Is a symmetric bounce possible? (Olmedo, Saini, PS (appearing soon))

5 / 17



Questions we are interested in this talk

• Is there a consistent non-singular viable quantization of the
Schwarzschild interior which is free from dependence of the fiducial
structures and has GR in infra-red limit?
(Corichi, PS (16))

• Is the resulting quantum difference equation stable? If yes, can
we understand singularity resolution at the full quantum level using
numerical simulations?
(Yonica, Khanna, PS (in progress))

• Given a concerete QG model can we extract detailed
phenomenology of BH to WH transition?
(Corichi, PS (appearing soon))

• Schwarzschild interior is Kantowski-Sachs vacuum. Highly
anisotropic singularity implies in general asymmetric bounce. In
some studies probing QG effects in collapse, such as Planck stars,
a symmetric bounce is considered as in isotropic models with a
Ricci (instead of Weyl) dominated singularity.
Is a symmetric bounce possible? (Olmedo, Saini, PS (appearing soon))

5 / 17



Classical aspects

Schwarzschild interior can be described by a vacuum
Kantowski-Sachs spacetime. Spatial manifold: R× S2, with a
fiducial metric:

ds2
o = dx2 + r2

o(dθ
2 + sin2 θ dφ2)

To define symplectic structure, restrict the non-compact x
coordinate by Lo. Fiducial volume of the cell Vo = 4πr2

oLo.

Using the symmetries, and imposing Gauss constraint, the
connection and triads become:

Aia τi dxa =
c

Lo
τ3 dx+ b τ2dθ − bτ1 sin θ dφ+ τ3 cos θ dφ

Eai τ
i ∂

∂xa
= pc τ3 sin θ

∂

∂x
+
pb

Lo
τ2 sin θ

∂

∂θ
−
pb

Lo
τ1

∂

∂φ

The connection and triad components are invariant under freedom
to rescale coordinates and satisfy: {c, pc} = 2Gγ, {b, pb} = Gγ

Under rescaling of fiducial length Lo → ξLo: c→ ξc, pb → ξpb.
pc and b invariant. Physical predictions must be independent of ξ.
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Classical aspects

Spacetime metric:

ds2 = −N2dt2 +
p2
b

|pc|L2
o

dx2 + |pc| (dθ2 + sin2 θ dφ2)

where p2
b

|pc|L2
o

= (2m/t− 1), |pc| = t2, m = GM

Classical dynamics:

Hclass = −Nsgn(pc)

2Gγ2

(
(b2 + γ2)

pb√
|pc|

+ 2bc|pc|1/2
)

For a black hole of mass m:

b(t) = ±γ
√

(2m− t)/t , pb(t) = Lo
√
t(2m− t)

c(t) = ∓γ
mLo

t2
, and pc(t) = ±t2

Singularity at pb = 0 and pc = 0. Horizon at pb = 0, pc = 4m2.
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Quantization

CHam = −
∫

d3x e−1εijkE
aiEbj(γ−2 F kab − Ωk

ab)

F iab expressed in terms of holonomies over loops in x− θ, x− φ
and θ − φ planes. Edge length of the loops along x direction and
along S2 parameterized by δc and δb respectively.

Choice 1: (Ashtekar, Bojowald; Modesto (05)) Minimum area of all the loops
equal to the same constant value (early LQC idea).

Choice 2: (Boehmer, Vandersloot (07)) Loops with triad dependent areas
motivated by improved dynamics in LQC (Ashtekar, Pawlowski, PS (06))

Choice 3: (Corichi, PS (16)) A more careful implementation of fixed area
loops considering underlying geometry.

All choices yield non-singular quantum Hamiltonian constraint.
This does not mean all of them are viable. Independence from
fiducial length and correct infra-red behavior necessary.
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Quantization prescriptions: comparison

Quantum constraint consists of sin(δbb)/δb and sin(δcc)/δc.
Departures from classical theory when δbb and δcc large.

Choice 1: (Ashtekar, Bojowald; Modesto (05)) δb = δc = const = µo.
Problematic because of fiducial length dependence in sin(µoc).
Arbitrary scales at which bounce can occur. WH mass completely
arbitrary. Near the horizon one obtains classical GR.

Choice 2: (Boehmer, Vandersloot (07)) Mimics improved dynamics:

δb =
√

∆
pc

, δc =
√

pc∆
pb

. sin(δcc) and sin(δbb) terms do not suffer

with fiducial length rescaling. But, δcc diverges at horizon implying
large “Planck scale effects” at small spacetime curvature.
Spacetime after bounce not a white hole (Dadhich, Joe, PS (15)).

Choice 3: (Corichi, PS (16)) No fiducial cell dependence. Right infra-red
behavior. Min. area of �x−θ and �x−φ: δbroδcLo = ∆
Min. area of �θ−φ: (δbro)

2 = ∆

(open loop, generalization possible (Olmedo, Saini, PS (to appear)))
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Quantum Hamiltonian constraint

Quantization results in an anisotropic difference equation with
unequal spacings in volume V = 4π|pb||pc|1/2:

ĈΨ(µ, τ) =

[ (
Vµ+δb,τ

− Vµ−δb,τ + Vµ+3δb,τ+2δc − Vµ+δb,τ+2δc

)
Ψ(µ + 2δb, τ + 2δc)

+
(
Vµ−δb,τ − Vµ+δb,τ + Vµ+δb,τ−2δc − Vµ+3δb,τ−2δc

)
Ψ(µ + 2δb, τ − 2δc)

+
(
Vµ−δb,τ − Vµ+δb,τ + Vµ−3δb,τ−2δc − Vµ−δb,τ+2δc

)
Ψ(µ− 2δb, τ + 2δc)

+
(
Vµ+δb,τ

− Vµ−δb,τ + Vµ−δb,τ−2δc − Vµ−3δb,τ−2δc

)
Ψ(µ− 2δb, τ − 2δc)

+
1

2

[ (
Vµ,τ+δc − Vµ,τ−δc + Vµ+4δb,τ+δc

− Vµ+4δb,τ−δc

)
Ψ(µ + 4δb, τ)

+
(
Vµ,τ+δc − Vµ,τ−δc + Vµ−4δb,τ+δc

− Vµ−4δb,τ−δc

)
Ψ(µ− 4δb, τ)

]

+2(1 + 2γ
2
δ
2
b )(Vµ,τ−δc − Vµ,τ+δc )Ψ(µ, τ)

]
/(2γ

3
δ
2
bδcl

2
Pl)

(δb =
√

∆/2m and δc =
√

∆/Lo)

At classical scales, yields the corresponding Wheeler-DeWitt
equation. Correct classical limit at the horizon.
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Preliminary results from numerical simulations

(Yonica, Khanna, PS (in progress)) For black holes with masses much larger
compared to Planck mass, difference equation turns out to be
von-Neumann stable. Starting from initial data, stable evolution in
either τ or µ as clock can be obtained.

Ψ(n+2)δb,τ+2δc Ψ(n−2)δb,τ+2δc

Ψ(n−4)δb,τ Ψnδb,τ Ψ(n+4)δb,τ

Ψ(n−2)δb,τ−2δc Ψ(n+2)δb,τ−2δc

nδb

τ

τ

µ

|Ψ|

Non-singular numerical evolution across the central singularity at
τ = 0 achieved. Relative fluctuations grow near the bounce but
have very similar features across the bounce. Agreement with
classical trajectories far away from bounce.
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Physics from effective dynamics

Heff = −Nsgn(pc)

2Gγ2

[
2

sin(δcc)

δc

sin(δbb)

δb
|pc|1/2+

(
sin2(δbb)

δ2
b

+ γ2

)
pb |pc|−1/2

]
Very similar to Bianchi-I spacetime where effective dynamics validated recently

(Diener, Megevand, Joe, PS (17))

Key features:

Unlike earlier quantizations, white hole mass independent of
fiducial length Lo.
Bounce highly asymmetric due to anisotropic shear. WH mass
is approximately a quartic power of the initial BH mass.
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Some details of quantum gravitational regimes

(Corichi, PS (to appear))

Generally there are two distinct quantum gravitational
regimes. The departures of sin(δcc)/δc from classical connection c

begin and end quickly in comparison to departures of sin(δbb)/δb from

classical connection b.

For some time, the effective geometry is a mixture of “black
hole” and “white hole” geometries. In this period, quantum regime

in c has passed and that in b is yet to begin.

Quantum regime in b very asymmetric in proper time. Very

short regime in the quantum black hole geometry, but a very long regime

in quantum white hole geometry.

For a black hole of mass m = 50:
Time to cross quantum regime in c: ≈ 3.6 Planck seconds
Time to cross quantum regime in b: ≈ 37000 Planck seconds
(Only 126 Planck seconds to reach bounce from black hole horizon)
Time to white hole horizon: ≈ 1.36× 1012 Planck seconds
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Different time steps to white hole formation

Bounce time to cross quantum regime in c.

Bounce time to cross quantum regime in b, into white hole
geometry. Dominates quantum regime.

Time to form the white hole horizon. (Delivery time from the
parent black hole to the child white hole)

Results from numerics:

Proper time for bounce scales exactly as m for large black holes
with m ≥ 10 (universal relationship).

Scales roughly as m2 for Planck size black holes (m ∼ 0.7− 5).

Size matters for bounce time because quantum geometry explicit.

Delivery time scales exactly as m5 for black holes of all masses.

These are not the transition times seen by external observers.
How do these translate to relevant scaling for external observers?
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Are symmetric bounces possible in loop quantum
Schwarzschild interior?

(Olmedo, Saini, PS (to appear)) Asymmetry in bounce occurs because pb and
pc bounce at different times and the lack of reflection symmetry at
the bounce times.

Demanding bounce to be symmetric in the effective dynamics leads
to

arctanh

[
1√

1+γ2δ2b

]
√

1 + γ2δ2b
=

1

4
log

(
8GM

γLoδc

)

This condition can not be satisfied in the CS quantization for any
real value of M .

The constraint on the edge lengths of the loops δb and δc can be
fulfilled by assuming generalization in loop construction via some
constants α and β:

δ2
b r

2
o = α2∆, δbroδcLo = αβ∆
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Symmetric bounces

One such generalization allows keeping the closed loop intact, but
exploits the freedom in the open loop as

δbroδcLo = ∆, δ2
b r

2
o = α2∆
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In contrast to CS model (right), symmetric bounces can be
obtained by altering the construction of loops over which
holonomies are constructed. Different quantizations possible which
yield a symmeric bounce, albeit with a delicate loop construction.
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Summary/open issues

Is there a consistent viable loop quantization of Schwarzschild
interior? Hopefully, but various checks still remaining.
Quantization prescription strictly tied to Schwarzschild spacetime.
Horizon plays a key role in this choice. Problems with improved dynamics
motivated prescription occur because of the coordinate singularity!

(But, gives generic resolution of strong singularities in Kantowski-Sachs

cosmology! (Saini, PS (16))). Surprising (but related) results found in Milne

and flat Kasner spacetimes in LQC (Garriga, Vilenkin, Zhang (13); PS (16)).

Important to have an understanding of LQG effects in empty spacetimes.

In Schwarzschild interior bounces are highly asymmetric.
This is in general true whenever Weyl dictates singularity.

Bounces can be constructed to be symmetric by “tuning” the
quantization prescription. Viable? Desired mass scaling? Relation

with ideas in QRLG (Alesci’s talk) or coherent states (Liegener’s talk)?

Concrete quantum gravitational model available, detailed
phenomenological implications can be studied. So far only first

steps taken. Some ideas can be useful for Planck stars.
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