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A new common framework in Quantum Gravity

major advances in our understanding of quantum gravity come from insights and
techniques from quantum information theory and quantum statistical mechanics

Holographic principle
Bekenstein 81,t'"Hooft 93, Susskind 94

=> gauge field theory/gravity duality

Ade_|_1 Ed—l

String theory: AdS/CFT duality

Equivalence principle

Einstein => Penrose 71, Rovelli & Smolin 95

=> relational texture of space-time

ST dynamical
record of frames
transformations

Spin-Networks

LQG, SF, GFTs: quantum space-(time) geometry
described by discrete, pre-geometric degrees of
freedom, of combinatorial and algebraic nature

in both scenarios quantum entanglement becomes a tool to characterise the quantum texture
of space-time in terms of the structure of correlations of some microscopic states as well as the
emergence of a continuum geometric description for space-time geometry




LQG: space(time) from entangled states of quantum geometry

gravity as a lattice gauge theory on a superposition of SU(2)/SL(2,C) spin-network graphs

b 1 27+1
— . Z <U"717j7 a, C> <Uh/27j7 C, b>
V27 +1 —

maximally mixed state
Donnelly 2012

- LQG structural level: c
a

=>  space geometry from pre-geometry, ent & coarse graining

Girelli Livine 05, Livine Terno 2005-08
Dittrich, Bahr, Steinhaus, Martin-Benito...

Charles Livine 2016, GC Mele, Vitale, Oriti

(study of continuum limit)

=>  diffeos compatible definition of entanglement: localisation
and boundary charges — holographic dualities?

Freidel Donnelly 16 Freidel Perez Pranzetti 16
Delcamp Dittrich Riello, Geiller 16-17

- Area law for entanglement entropy as a signature of good semiclassical behaviour:

Bianchi Myers 2012

Bianchi Guglielmon Hackll Yokomizo 16
GC Rovelli Haggard Riello Ruggiero 14-15, Hamma Hung Marciano Zhang 15

GC Anza 16, Han et al. 16

& BH entropy: Rovelli, Perez, de Lorenzo, Smerlak, Husain, Bodendorfer,
Oriti, Pranzetti Sindoni ... \infty



Bulk reconstruction in AdS/CFT

similar structural behaviour in AdS/CFT:

gravitational theories are equivalent to non-gravitational theories defined as quantum

many-body systems or quantum field theories: a dual non-gravitational theory lives on

the boundary of its original gravitational spacetime

- holographic ~ Area(vya)

entanglement entropy A 4G N

a series of attempts of space-time bulk geometry
=> reconstruction from the structure of correlations of
the boundary state

eternal AdS BH =
classically connected

spacetime /

e A
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[Van Raamsdonk 2009] [Cao Carroll Michalakis 2016]
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correcting codes

Ryu-Takayanagi 2015] ... [Hubeny, Rangamani]

- QIT toy models for the bulk/boundary
correspondence: holographic quantum error-

[Pastawski, Yoshida, Harlow Preskill]



Surface/State correspondence

one of main direct interests for our community:

- again key role played by networks: CMT Tensor Network
techniques to express quantum wave functions in terms of
network diagrams => help understanding holography via
geometrization of algebraically complicated quantum states

. MERA states: particular example of TN states
9 designed to support the entanglement of a CFT
with geometrical interpretation (hyperbolic space)

—  conjecture: AdS/CFT correspondence to be interpreted
as a Multiscale Entanglement Renormalisation Algorithm
( [Vidal 06, Swingle 09]

generalisation Miyaji-Takayanagi 2015]

surface/state correspondence: in any spacetime described by Einstein gravity,
each codim-2 convex surface corresponds to a quantum state in the dual theory.

This largely extends the holographic principle as it can be applied to gravitational
spacetime without any boundaries

Freidel, Donnelly, Pranzetti, Dittrich,......



Frame a common field in Quantum Gravity

L

AdSg 1
LQG-wise:
surface/state Correspondence think of TND path integral definition
continuum limit through renormalisation of general of boundary states through sums
random cellular complexes dual to discrete space over spin—foam ’open gra ph states’

w/ possible QFT duals on boundaries

sketch a concrete realisation of this scenario by means of the generalised GFT formalism:
=> detfine a GFT Tensor Network analogue with nice properties

=> |look for the holographic behaviour of entanglement entropy




Group Field Theories

Group Field Theories (GFTs) are combinatorially non-local quantum field theories
defined on a group manifold

e.g. d=3 . : :
with gauge invariance

g at the vertex

?(9i) = ¢(9: )

&(g1, s 9d) : G*% 5 C

random function (field)

dv(¢)/Z

probability measure

provide a 2n quantisation scheme for LQG:

no embedding in a continuum manifold and no cylindrical consistency imposed on our

quantum geometry wave-functionals

Fock construction through
decomposition of spin network states in _— z‘a’bﬂj,@@b:b) ®UC>
terms of elementary building blocks {abe)
corresponding to tensor maps

associated to nodes of the spin network

graphs (quantum many body system)




GFTs random lattices as simplicial geometries

_ the Feynman diagrams _F of the theory are dual to cellular complexes, and the perturbative

expansion of the quantum dynamics defines a sum over random lattices of (a priori) arbitrary
topology

for GFT models where appropriate group theoretic data are used and specitic properties

are imposed on the states and quantum amplitudes, the same lattice structures can be
understood in terms of simplicial geometries

d+1
Sal9] Z/dgz’dgé #(9:) K(gigi ') 6(g) + >\/ 11 dgii Vigisai ") ¢(g1s) - - ¢(garas)
i#j=1
with
/
—1
K(9i, 9;) /th5 gig;  h); i <J :
gwgﬂ / Hdh H(S (hi gij) y
1<J

(e.g. Boulatov model => Ponzano-Regge)



emphasise: GFT fields as tensors

- the single-particle quantum state

p) = /Gd dg; ¢(gi)lgs) € H®Y for |g;) € H ~ L?[G]

behaves as generalised rank-d tensor states, i.d. multi dimensional arrays of c-numbers

91\/4 g
. R g1
Y P(g) <=> Ty rg..ng =T(A) | or 1) g2

g3

\

93 where generally T : X — C with X = {X|X = (A1,..,Aq) }
(exploit the combinatorially tensorial nature)

- a V-particle states can be decomposed into products of elements of single-particle space

P) = / TTdgio()) &) . [g") € He®Y ~ L2[G4V /GV]

. ' 1 1 1 V V
with (I)(gg) :(I)(917927"'7gd7gl 7"'gd,)
can be seen as a Tensor Network state



Tensor Networks

In the tensor network methods, a quantum state | W) is described in terms of a set of

tensors. Consider a lattice L made of N sites, where each site is described by a complex
vector space V of finite dimension d.
[Vidal]

-apure state |W) € VN of the lattice can be expanded as

d
‘\Ij> — Z (w)il,’iQ,---,iN’i17i27“'7iN>

where i) denotes a basis of V forsite sin L

- a TN decomposition for |¥) consists of a set of tensors T™) and a network pattern or
graph characterised by a set of vertices and a set of directed edges

)
T bond (v)
\ indices (w)ilﬂé,...,’iN — tTr ®T

T4

auxiliary

Y
/
NN

T3
J/ the tensor trace contracts all bond

indices, leaving only the physical indices



Multiparticle state as a tensor network state

we can understand the wave-function on an open graph of V vertices or their dual

polyhedra as a tensor network encoding the entanglement structure of the multi-
particle state

(I)(gg) <=> ((I))gl,g2,...,gv = t1r <® ¢(gz)v>

- construct a representation with auxiliary group fields

glued by links convolution functions Mij | My) = M;; |g:) ® |g;) € HE?

- a V-particle states can be then decomposed as |Pr) = ® M| ® &)
el




Dictionary: GFT states (many body wave-functions) as tensors networks

Table A Group Fields Tensors
quantum |§> €H®d2L2[Gd] ‘)\@>, iZl,...,d|)\| = D in Hp
one particle 0y = ©v(9) |g) T,) = TAl...Ad])_Q c H, = H3* tensor state
state
gluing <Mg£| = (M) = My, x, | A1) ®|A2) € link state
functional [ dgidgs M(glgega) (g1] (g2 H, = HS?
c H*®2
multiparticle  |®r) € Hy ~ LGV /GV] W) tensor
state network
state
_ 1% _ oL N
product [ 08) = ®per (My,| @Y o) | 1Un) = @F (M @Y |Tw) € tenson
state = [dgs Pr(ge, 95) |9s) Hgpr network
convolution decomposition
randomness Zdv(¢p) T[L] = (UTY), random
field theory probability measure TS =T L ny € Hr, tensor state




Dictionary: Spin-networks as gauge invariant tensors networks

Table B GFT network Spin Tensor Network Tensor Network
node 3 »(9) Sp{l'm} | Ly
= ¢(91, 92, g3, 94) xSy G B
link M(gigego) M M,
sym o(hg) = () [TS Do (9t oy, | TS Uit T, =
— i;l/nl...mv T,ul“',uv
state %) = ) = (W) =
: inin L N
Q¢ (Mg, |y, |9m) Qo (M| Q,, [67" ) | Q¢ (Me| &5, |Thn)
indices gi € G, m; € H;, SU(2) spin-j Wi € Zop, nth
lg;) € H ~ L?[G] irrep. cyclic group
dim 00 dimH; =25 +1 dimZ, =n




Group Field Random Tensor Networks

being tensor field theories, GFTS reproduce the structure of very interesting TN states:
random tensor networks (RTS)

) = ) (M| X IT)

<1y >

1
1- maximally entangled link states | M) = —=0dx, 2, | A1) @ |A2)

v D

2 - tensors T, are unit vectors chosen independently at random from their respective Hilbert
spaces. the unique “uniform” unitarily invariant distribution is induced by the Haar
measure on the unitary group by acting on an arbitrarily chosen generating vector:

(for arbitrary reference state |0,) define T%) = Ul0y) with U unitary )

3 - In the large bond dimension limit, RTS saturate the

TN entropy bound, reproducing the holographic Ryu
Takanayagi entropy formula

S(A) ~ log(D)]yal

Hayden et al.arXiv:1601.01694v1 F. Pastawski, B. Yoshida, D. Harlow and J. Preskill



A relevant example: Random Tensor Networks

—> holographic behaviour: random tensors networks provide explicit toy
examples for the surface/state correspondence

key features of the random character:

- the random average of an arbitrary function f (T,) of the the state | T, > is equivalent to
an integration over U according to the Haar probability measure

- averages enters linear traces operation, hence simplifying the derivation of the non-
trivial entanglement properties of the states, induced as usual by partial tracing

- as the system dimension becomes large, random states have typical behaviour

Hayden et al.arXiv:1601.016%94v1

we expect to find a similar behaviour in our GFT setting along with
Hayden'’s statistical approach



Group Field Random Tensor Networks

Let’s consider the boundary state associated to the open spin network graph A/

D) = QM| Q) |on) € Q) He

eEN LEON

- the boundary density operator is a linear function of independent pure states of
each tensor

- V 7
p = try ® | M) (M| ® Ou) (Do)

/e v

- to a subregion (A) of the boundary we associate a reduced state

pa = trp|pl/tr|p]




Group Field Random Tensor Networks

- we then look for the entanglement entropy of A/B:

1

Sprp = —tr[palogpa] = lim Sy(A) = ———logtr[p}]

( Rényi via replika trick )

where e 5N = tr[p]/(tr[p])N = Za/Z0

KEY 1: calculating the Rényi entropy is hard, however we can use the random
- character of the field to calculate the expectation value of the Rényi: expand in the

fluctuation

Za+067Z4 7 N L Y/ VAT
S A = —10 —— — —10 —+ n n
w(4) 7o + 0 ° 7 (Z noo 4y 24

n

- KEY 2: fluctuations are suppressed in the limit of large bond dimension

random states in high-dimensional bipartite systems: “concentration of measure”
phenomenon applies, meaning that on a large-probability set macroscopic parameters
are close to their expectation values (bond/group dimension, => continuum limit)



Group Field Random Tensor Networks

- we then look for the entanglement entropy of A/B:

1

Sprp = —tr[palogpa] = lim Sy(A) = ———logtr[p}]

( Rényi via replika trick )

where e 5N = tr[p]/(tr[p])N = Za/Z0

KEY 1: calculating the Rényi entropy is hard, however we can use the random
- character of the field to calculate the expectation value of the Rényi: expand in the

fluctuation

LA+ 044 Z A
n(A) = —log Zo + 62 sz n(4)

- KEY 2: fluctuations are suppressed in the limit of large bond dimension

random states in high-dimensional bipartite systems: “concentration of measure”
phenomenon applies, meaning that on a large-probability set macroscopic parameters
are close to their expectation values (bond/group dimension, => continuum limit)



Random Group Field Tensor Networks

permutation operator
/— acting on the states in A

Za _ E(trp}) _ Etr[p®VP(x); N, d)]

Zy  E(trp)N E(trp)™

tr |Qy 0 X, E(p) )P(7%; N, d)]
tr [®e Pe ® (pn )]

- we can get S~ (A) by computing the expectation values:

+ assuming factorised state

E(pn, ) [(|¢n><¢n) | = (/Hdgadg,a ¢n(ga)¢n(g/a)ga><g,a|>

in the standard field theory formalism we define the averaging via the path
integral of some GFT model

E[f$,¢]] = /[qu] D] flo, B e S¢-9]

_ the average over the N-replica of the wave functions (generalised tensors) associated
to each network vertex can be interpreted as a GFT N-point correlation function




Path integral averaging for the free theory

- we take the case  S[¢, ¢] = / dgdg’ ¢(g)K (g, &' )o(g") + ASins[d, d] + cc

with K(g,g") = d(g'g)

- A <<1and consider a perturbative expansion of the path integral in powers of A

E|]]o(g.)é(g )| =Eo ||| o(ga)d(gn)| + ON)

Wick theorem
& ¢ S P, () with Ha( X
TESN

the free theory N points correlation function translates into a sum over all permutations among
the group elements attached at each node

B A A B

tr[p4] =tr[p @ pPa] q_ _‘ ;[ _D




Path integral averaging for the free theory

- Z,and Z,correspond to summations of the combinatorial networks Ny(h,, .) and Ny(h,,m,)

Z, c'r Z /Hdhn Tr ®péV®IPhn(7rn)IP(7T%;N,d)
n |/ n

= CVr Z /H dh,, Ma(hy, ) at each node n we have a contribution P, (rt,)

Zy =CT Y /Hdhn Tr |(X) ' X) P, (7n)
n L/ n i

Tn ESN

=C'r Z /Hdhn No(hn, 7n) links contribution

- the (Feynman )networks get divided into several regions, with
same m,and h,. The links which connect different regions identity
boundaries between each pair of different regions or domain walls.

- for different domain walls and different assignments of permutation
groups to each region, we have different patterns for given network

=>  Z,and Z,are sum of BF amplitudes with different 2-complexes



Path integral averaging for the free theory

remark

this simple form of the various functions entering the calculation of the entropy, with the
emergence of BF-like amplitudes, is not generic: it follows from the choice of GFT kinetic

term, from the approximation used in the calculation of expectation values (neglecting GFT
interactions) and from the special type of GFT tensor network chosen

- we are interested in is the leading term of Z,and Z,, while taking the dimension D of the

bond Hilbert space much larger than 1. This leads us to seek the most divergent term of
the amplitudes (bubble divergences)

the divergence degree of BF amplitudes discretised on a lattice has been
=> : : : :
the subject of a number of works, both in the spin foam an GFT literature

Freidel, Gurau, Oriti 09, Bonzom and Smerlak 10-12

- the Nth Rényi entropy Syis associated to patterns with only one domain wall and h =1

e(l—N)SN _ % _ [5(]1)](1—N)min(#£eaAB) [1 i 0(5—1(]1)) 4 0()\)]
0]




Path integral averaging for the free theory

When N goes to 1, Sybecomes the entanglement entropy S:. The leading term of the
entanglement entropy Sg is

SEE = Mmin(#reo,,) Ind(1)

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the
same interpretation for the area of the minimal surface that we have mentioned in
the previous section, concerning the tensor network techniques.

the interaction kernel will generally lead to non-trivial bulk corrections!

4-body

A B A

oF LUD) (L

B
¢ /

Mingyi's talk later!



Results

¢ establish a precise dictionary between GFT states and (generalized) random tensor
networks. Such a dictionary also implies, under different restrictions on the GFT
states, a correspondence between LQG spin network states and tensor networks,
and a correspondence between random tensors models and tensor networks.

+ compute the Rényi entropy and derived the RT entropy formula:

- using directly GFT and spin network techniques, first using a simple
approximation to a complete definition of a random tensor network evaluation
seen as a GFT correlation function, but still using a truly generalized tensor
network seen as a GFT state, and then considering directly a spin network state as
a random tensor network. This elucidates further the correspondence and its
potential

the result shows that the same formalism allows to compute non-perturbative
quantum gravity corrections to the Ryu-Takayanagi formula, by including the
contributions from the GFT interaction term into the amplitude (as well as
considering different choices for the GFT kinetic term).

Mingyi's talk later!




Remarks/Speculations

o AdS/MERA/CFT may be extended, beyond AdS/CFT, to a more general space/TNR/QFT
correspondence: GFTs may play a role as auxiliary tensor field theories both fixing the
entanglement structure of the boundary physical theory and providing a dual simplicial
characterisation of the tensor network diagrams as discretised space

dynamics induces entanglement: looks like standard multi scale renormalisation techniques
may be associated to cMERA within the field theory framework of GFTs: what would play
the role of the MERA-like renormalisation scale (radial dimension)?

*

+ the structural similarity had been noted before, and also exploited, in the context of
renormalization of spin foam models treated as lattice gauge theories

G. Vidal,(2008), S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a
global symmetry, G. Evenbly and G. Vidal, Tensor network states and geometry; M. Han and L.-Y. Hung,
Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy, B. Dittrich, S.
Mizera, and S. Steinhaus, Decorated tensor network renormalization for lattice gauge theories and spin
foam models, C. Delcamp and B. Dittrich, Towards a phase diagram for spin foams, B. Dittrich, F. C. Eckert,
and M. Martin-Benito, Coarse graining methods for spin net and spin foam models, B. Dittrich, E. Schnetter,
C. J. Seth, and S. Steinhaus, Coarse graining flow of spin foam intertwiners



Thank Youl!



Tensor Network decomposition

structure

/ network diagram where bond indices represent

unphysical, auxiliary degrees of freedom that are
TN representations introduced for the purpose of efficiently writing
of a quantum state down a ground state

\ variational parameters

to be optimized, within a given structure of the
tensor network, to find a best tensor network state
which best describes the target quantum state

e.g. Multi-scale Entanglement Renormalization Ansatz - isometries implementing Co(z_rs)e 9raiﬂi|ﬂg
. . - . . Is)entanglers
(MERA): efficient TNR for variationally estimating the

.__,ST\ — j o
ground state of a critical quantum system (CFT). A

min., , |# bonds(vya)] ~ log L

< > A(L)

network geometry resembles a discretization of spatial slices of an AdS spacetime and
“geodesics' in the MERA reproduce the Ryu-Takayanagi formula for the entanglement
entropy of a boundary region in terms of bulk properties => AdS/MERA




