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major advances in our understanding of quantum gravity come from insights and 
techniques from quantum information theory and quantum statistical mechanics

A new common framework in Quantum Gravity

Holographic principle Equivalence principle
Bekenstein 81,t’Hooft 93, Susskind 94 Einstein => Penrose 71, Rovelli & Smolin 95

=>  relational texture of space-time

LQG, SF, GFTs:  quantum  space-(time) geometry 
described by discrete, pre-geometric degrees of 
freedom, of combinatorial and algebraic nature

=>    gauge field theory/gravity duality

String theory: AdS/CFT duality

=>

Spin-Networks
AdSd+1

Hd

⌃d�1

ST dynamical 
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Abstract

In loop quantum gravity we now have a clear picture of the quantum geometry of space, thanks
in part to the theory of spin networks. The concept of ‘spin foam’ is intended to serve as a

similar picture for the quantum geometry of spacetime. In general, a spin network is a graph
with edges labelled by representations and vertices labelled by intertwining operators. Similarly,
a spin foam is a 2-dimensional complex with faces labelled by representations and edges labelled

by intertwining operators. In a ‘spin foam model’ we describe states as linear combinations of
spin networks and compute transition amplitudes as sums over spin foams. This paper aims
to provide a self-contained introduction to spin foam models of quantum gravity and a simpler

field theory called BF theory.

1 Introduction

Spin networks were first introduced by Penrose as a radical, purely combinatorial description of the
geometry of spacetime. In their original form, they are trivalent graphs with edges labelled by spins:

1

2

1
1/2

3/2
1 3/2

1/2

3

2
1

2

1/2

1
1/2

1

3/2

1/2
3/2

2
3/2

In developing the theory of spin networks, Penrose seems to have been motivated more by the
quantum mechanics of angular momentum than by the details of general relativity. It thus came as
a delightful surprise when Rovelli and Smolin discovered that spin networks can be used to describe
states in loop quantum gravity.

Fundamentally, loop quantum gravity is a very conservative approach to quantum gravity. It
starts with the equations of general relativity and attempts to apply the time-honored principles of
quantization to obtain a Hilbert space of states. There are only two really new ideas in loop quantum
gravity. The first is its insistence on a background-free approach. That is, unlike perturbative
quantum gravity, it makes no use of a fixed ‘background’ metric on spacetime. The second is that it
uses a formulation of Einstein’s equations in which parallel transport, rather than the metric, plays

1

in both scenarios quantum entanglement becomes a tool to characterise the quantum texture 
of space-time in terms of the structure of correlations of some microscopic states as well as the 
emergence of a continuum geometric description for space-time geometry



LQG: space(time) from entangled states of quantum geometry

a

b

Entanglement of a Wilson line

in the Hilbert space decomposition the Wilson loop pure state reads

=
1p

2j + 1

2j+1X

c=1

hU |�1, j, a, ci hU |�2, j, c, bi
c

{|�, j, a, ci}, {|�, j, c, bi} orthonormal sets in H�1 , H�2

|�, j, a, bi = 1p
2j + 1

2j+1X

c=1

|�, j, a, ci ⌦ |�, j, c, bi

w/

define the reduced density matrix ⇢1 = Tr2[|�, j, a, bih�, j, a, b|]

S(�1) = �Tr[⇢1 log ⇢1] = log(2j + 1)

entanglement entropy of the wilson line

maximally mixed state

LQG structural level:

Donnelly 2012

gravity as a lattice gauge theory on a superposition of SU(2)/SL(2,C)  spin-network graphs 

diffeos compatible definition of entanglement: localisation 
and boundary charges — holographic dualities?

=> space geometry from pre-geometry, ent & coarse graining 

 (study of continuum limit) Girelli Livine 05, Livine Terno 2005-08

Charles Livine 2016, GC Mele, Vitale, Oriti

Delcamp Dittrich Riello, Geiller 16-17

Freidel Donnelly 16

Area law for entanglement entropy as a signature of good semiclassical behaviour:

Bianchi Guglielmon Hackll Yokomizo 16
 GC Rovelli Haggard Riello Ruggiero 14-15, Hamma Hung Marciano Zhang 15

Bianchi Myers 2012

 GC Anzà 16, Han et al. 16

=>

& BH entropy: Rovelli, Perez, de Lorenzo, Smerlak, Husain, Bodendorfer, 

Oriti, Pranzetti Sindoni … \infty

Dittrich, Bahr, Steinhaus, Martin-Benito...

Freidel Perez Pranzetti 16

-

-



Bulk reconstruction in AdS/CFT

a series of attempts of space-time bulk geometry 
reconstruction from the structure of correlations of 
the boundary state

ΣA

ΣB

ɤA
Σ

Σ=ΣA ΣBMd+2

Figure 2: Calculations of Entanglement Entropy in Surface/State Correspondence.

SΣ
A does not change under this deformation as is clear from (2.10), which is consistent

with the unitary evolution. Note that this unitary deformation of ΣA (denoted by Σ̂A) is

terminated when it reaches the extremal surface γΣ
A. This is because we need to keep the

closed surface Σ̂A ∪ΣB to be convex in order to define the reduced density matrix ρ(Σ̂A).

We can also argue that ρ(ΣA) does not change if we deform the surface ΣB with the same

constraint.

Note that if we apply these claims to the AdS/CFT correspondence and take Σ to

be the AdS boundary, then (2.10) is reduced to the holographic entanglement entropy

formula [25]. Therefore our proposal (2.10) can be regarded as a generalization of holo-

graphic entanglement entropy. For example, we can prove the strong subadditivity in the

same way as that in the holographic entanglement entropy [21, 26].

Now it is also intriguing to ask what is the quantum interpretation of the area of Σ

itself. Even though, Σ is not an extremal surface in general, we can divide Σ into infinitely

many small subregions, which are all well-approximated by extremal surfaces. In such a

small region, the geometry is approximated by a flat space and thus the extremal surfaces

are given by flat planes. This consideration and the proposed correspondence (2.10) lead

to the following relation:
∑

i

SΣ
Ai

=
A(Σ)

4GN
, (2.11)

where Ai describes the infinitesimally small portions of Σ such that Σ = ∪iAi andAi∩Aj =

φ. SΣ
Ai

is the entanglement when we trace out the complement of Ai inside Σ. It is useful

to note that the left hand side of (2.11) is always larger than or equal to the total von-

Neumann entropy for ρ(Σ) owing to the subadditivity relation.

We would like to call the left-hand side of (2.11) the effective entropy Seff(Σ). This

6

[Pastawski, Yoshida, Harlow Preskill]

SA =
Area(�A)

4GN

=>

[Van Raamsdonk 2009] [Cao Carroll Michalakis 2016]

gravitational theories are equivalent to non-gravitational theories defined as quantum 
many-body systems or quantum field theories: a dual non-gravitational theory lives on 
the boundary of its original gravitational spacetime

similar structural behaviour in AdS/CFT:

 holographic 
entanglement entropy

-

Ryu-Takayanagi 2015]  … [Hubeny, Rangamani] 

classical connectivity from quantum superposition Raamsdonk 2010

Sd

H = H1 �H2|�⇥ = |�1⇥ � |�2⇥

two non interacting quantum field theories on

simplest quantum state: product state = no entanglement

entangled subsystems |�(�)⇥ =
�

i

e
��Ei

2 |Ei⇥ � |Ei⇥

�T = Tr2(|�⇥��|) =
�

i

e��Ei |Ei⇥�Ei|
classical connectivity arises by 

entangling the dof  in the two 
components

eternal  AdS BH = 
classically connected 

spacetime

QIT toy models for the bulk/boundary 
correspondence: holographic quantum error- 
correcting codes

-



Surface/State correspondence 

conjecture: AdS/CFT correspondence to be interpreted 
as a Multiscale Entanglement Renormalisation Algorithm

again key role played by networks: CMT Tensor Network 
techniques to express quantum wave functions in terms of 
network diagrams  =>  help understanding holography via 
geometrization of algebraically complicated quantum states

-

surface/state correspondence: in any spacetime described by Einstein gravity, 
each codim-2 convex surface corresponds to a quantum state in the dual theory. 
This largely extends the holographic principle as it can be applied to gravitational 
spacetime without any boundaries

Miyaji-Takayanagi 2015]

[Vidal 06, Swingle 09]

one of main direct interests for our community:

MERA states: particular example of TN states 
designed to support the entanglement of a CFT 
with geometrical interpretation (hyperbolic space)

A

�A

generalisation

e.g.

Freidel, Donnelly, Pranzetti, Dittrich,……



=>

AdSd+1

Hd

⌃d�1

surface/state correspondence

<=>

continuum limit through renormalisation of general 
random cellular complexes dual to discrete space 
w/ possible QFT duals on boundaries

Frame a common field in Quantum Gravity
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Abstract

In loop quantum gravity we now have a clear picture of the quantum geometry of space, thanks
in part to the theory of spin networks. The concept of ‘spin foam’ is intended to serve as a

similar picture for the quantum geometry of spacetime. In general, a spin network is a graph
with edges labelled by representations and vertices labelled by intertwining operators. Similarly,
a spin foam is a 2-dimensional complex with faces labelled by representations and edges labelled

by intertwining operators. In a ‘spin foam model’ we describe states as linear combinations of
spin networks and compute transition amplitudes as sums over spin foams. This paper aims
to provide a self-contained introduction to spin foam models of quantum gravity and a simpler

field theory called BF theory.

1 Introduction

Spin networks were first introduced by Penrose as a radical, purely combinatorial description of the
geometry of spacetime. In their original form, they are trivalent graphs with edges labelled by spins:
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In developing the theory of spin networks, Penrose seems to have been motivated more by the
quantum mechanics of angular momentum than by the details of general relativity. It thus came as
a delightful surprise when Rovelli and Smolin discovered that spin networks can be used to describe
states in loop quantum gravity.

Fundamentally, loop quantum gravity is a very conservative approach to quantum gravity. It
starts with the equations of general relativity and attempts to apply the time-honored principles of
quantization to obtain a Hilbert space of states. There are only two really new ideas in loop quantum
gravity. The first is its insistence on a background-free approach. That is, unlike perturbative
quantum gravity, it makes no use of a fixed ‘background’ metric on spacetime. The second is that it
uses a formulation of Einstein’s equations in which parallel transport, rather than the metric, plays

1

=>   define a GFT Tensor Network analogue with nice properties

sketch a concrete realisation of this scenario by means of the generalised GFT formalism:

=> look for the holographic behaviour of entanglement entropy

think of TND path integral definition 
of boundary states through sums 
over spin-foam ‘open graph states’

LQG-wise:



graph structure from entanglement

2– spin network states can be regarded as linear combinations of disconnected
open spin network states with additional conditions enforcing the gluing =>
encoding the connectivity of the graph.

ip =
1�

2j + 1

2j+1�

p=1

|epi�ep|

we obtain a closed and connected graph     by tensoring the links together via SU(2) 
invariant intertwiner and then gluing the individual intertwiner states among each other 
by attaching the links via bivalent intertwiners 

�

�

|Ii =
�

{a,b,c}

ia,b,c|j, ai � |j, bi � |j, ci

Topological information: connectivity

iv

=> more general, purely algebraic and combinatorial picture

Group Field Theories

�(g1, ..., gd) : G
⇥d ! C

random function (field)

d⌫(�)/Z
probability measure

Group Field Theories (GFTs) are combinatorially non-local quantum field theories 
defined on a group manifold

provide a 2n quantisation scheme for LQG: 

no embedding in a continuum manifold and no cylindrical consistency imposed on our 
quantum geometry wave-functionals 

e.g. d=3

g1 g2
with gauge invariance 
at the vertex 

v �(gi) = �(gi�)

Fock construction through 
decomposition of spin network states in 
terms of elementary building blocks 
corresponding to tensor maps 
associated to nodes of the spin network 
graphs (quantum many body system)

-

-

g3



GFTs random lattices as simplicial geometries

the Feynman diagrams       of the theory are dual to cellular complexes, and the perturbative 
expansion of the quantum dynamics defines a sum over random lattices of (a priori) arbitrary 
topology

F

for GFT models where appropriate group theoretic data are used and specific properties 
are imposed on the states and quantum amplitudes, the same lattice structures can be 
understood in terms of simplicial geometries

K(gi, g
0
i) =

Z

G
dh

Y

i

�(gig
0�1
i h),

V(gijg0�1
ji ) =

Z

G

Y

i

dhi

Y

i<j

�(hi gij)

Z =

Z
D�D�̄e�S[�,�̄] =

X

�

⇧i(�i)Ni(�)

Aut(�)
A�

Sd[�] =

Z
dgidg

0
i �(gi)K(gig

0�1
i )�(g0i) + �

Z d+1Y

i 6=j=1

dgij V(gijg0�1
ji )�(g1j) · · ·�(gd+1j)

with
4-body

-

-

(e.g. Boulatov model => Ponzano-Regge)



emphasise: GFT fields as tensors

behaves as generalised rank-d tensor states, i.d. multi dimensional arrays of c-numbers

T(v)

g1
g2
g3

T : X ! C X = {~�|~� = (�1, ...,�d)}

T�1,�2...,�d ⌘ T (~�)�(~g) or<=>

-  the single-particle quantum state

|�i =
Z

Gd

dgi �(gi)|gii 2 H⌦d
for |gii 2 H ' L2

[G]

where generally with

- a V-particle states can be decomposed into products of elements of single-particle space

with

|�i =
Z VY

j=1

dgji�(g
j
i ) |g1i ... |gV i 2 Hd⌦V ' L2[Gd⇥V /GV ]

�(gji ) = �(g11 , g
1
2 , ..., g

1
d, g

V
1 , ...gVd )

(exploit the combinatorially tensorial nature)

g1 g2

v

g3

can be seen as a Tensor Network state



Tensor Networks

In the tensor network methods, a quantum state        is described in terms of a set of 
tensors. Consider a lattice L made of N sites, where each site is described by a complex 
vector space     of finite dimension d.

| i =
dX

i1,i2,...,iN=1

( )i1,i2,...,iN |i1, i2, ..., iN i

( )i1,i2,...,iN = tTr

 O
v

T (v)

!
a TN decomposition for        consists of a set of tensors          and a network pattern or 
graph characterised by a set of vertices and a set of directed edges

 - a pure state                        of the lattice can be expanded as  | i 2 V⌦N

where         denotes a basis of      for site s in L

| i

V

T (v)| i

|isi V

the tensor trace contracts all bond 
indices, leaving only the physical indices

auxiliary 
bond 
indices=

i1 i2
i3

T 1

T 2 T 3

e.g. N=3

T 4

 - 

( )

[Vidal]



we can understand the wave-function on an open graph of V vertices or their dual 
polyhedra as a tensor network encoding the entanglement structure of the multi-
particle state

Multiparticle state as a tensor network state

<=>

�

gVg1

<=>

g1

. . .

�

�
�

|M`i = Mij |gii ⌦ |gji 2 H⌦2

�

|��i ⌘
O
`2�

hM`|
VO
v

|�vi

�(gji ) (�)g1,g2,...,gV = tTr

 
VO

v=1

�(gi)v

!

. . .

construct a representation with auxiliary group fields

- 

- 

 glued by links convolution functions Mij

-  a V-particle states can be then decomposed as



Dictionary: GFT states (many body wave-functions) as tensors networks

Table A Group Fields Tensors

classical ' : Gd ! C
gi 7! '(gi)

T : X ! C
X = {~� |~� = (�

1

, . . . ,�

d

)}

'(~g) ⌘ '(g
1

, g
2

, · · · , gd) T�
1

�
2

···�
d

⌘ T (~�)

gi 2 G generic group e.g. �i 2 Zn, nth cyclic group

gauge sym '(h~g) = '(~gi) our case T (~�+ ~̀) = T (~�)
~

` ⌘ (`, · · · , `), ` 2 Z

quantum |~g i 2 H⌦d ' L2[Gd] |�ii, i = 1, . . . , d|�| = D in HD

one particle

state

|'i = '(~g) |~g i |Tni = T�
1

···�
d

|~�i 2 Hn = H⌦d
D tensor state

gluing

functional

hMg
`

| =R
dg

1

dg
2

M(g†
1

g`g2) hg
1

| hg
2

|
2 H⇤⌦2

|Mi = M�
1

�
2

|�
1

i ⌦ |�
2

i 2
H` = H⌦2

D

link state

multiparticle

state

|�
�

i 2 HV ' L2[Gd⇥V /GV ] | N i tensor

network

state

product

state

convolution

���g
`

�

↵ ⌘ N
`2� hMg

`

|NV
n |'ni

=
R
dg@ ��

(g`, g@) |g@i
| N i ⌘ NL

` hM`|
NN

n |Tni 2
H@N

tensor

network

decomposition

randomness 1

Z d⌫(')
field theory probability measure

TU
µ ⌘ (UT 0)µ

T

0

µ

⌘ T

0

�1···�d
2 H

T

,

U 2 U(dim(H
T

))

random

tensor state

The generalisation of tensor networks in terms of group fields states is evident in the

spin-j decomposition of the latter '(gi) =
P

jTr['
j
{m}

⇣Q
i

p
dj

i

Dj
i

m
i

,n
i

(gi)
⌘
ī j{n} ].

Once we turn o↵ the sum over all possible js, fix the representation labels and ask

them to be equal, generically Fourier transformed GFT fields ' j
{m}, are tensors of single

rank d, with discrete indices mi = {m
1

, . . . ,md} spanning a finite dimensional space. The

– 17 –

Table A Group Fields Tensors

classical ' : Gd ! C
gi 7! '(gi)

T : X ! C
X = {~� |~� = (�

1

, . . . ,�

d

)}

'(~g) ⌘ '(g
1

, g
2

, · · · , gd) T�
1

�
2

···�
d

⌘ T (~�)

gi 2 G generic group e.g. �i 2 Zn, nth cyclic group

gauge sym '(h~g) = '(~gi) our case T (~�+ ~̀) = T (~�)
~

` ⌘ (`, · · · , `), ` 2 Z

quantum |~g i 2 H⌦d ' L2[Gd] |�ii, i = 1, . . . , d|�| = D in HD

one particle

state

|'i = '(~g) |~g i |Tni = T�
1

···�
d

|~�i 2 Hn = H⌦d
D tensor state

gluing

functional

hMg
`

| =R
dg

1

dg
2

M(g†
1

g`g2) hg
1

| hg
2

|
2 H⇤⌦2

|Mi = M�
1

�
2

|�
1

i ⌦ |�
2

i 2
H` = H⌦2

D

link state

multiparticle

state

|�
�

i 2 HV ' L2[Gd⇥V /GV ] | N i tensor

network

state

product

state

convolution

���g
`

�

↵ ⌘ N
`2� hMg

`

|NV
n |'ni

=
R
dg@ ��

(g`, g@) |g@i
| N i ⌘ NL

` hM`|
NN

n |Tni 2
H@N

tensor

network

decomposition

randomness 1

Z d⌫(')
field theory probability measure

TU
µ ⌘ (UT 0)µ

T

0

µ

⌘ T

0

�1···�d
2 H

T

,

U 2 U(dim(H
T

))

random

tensor state

The generalisation of tensor networks in terms of group fields states is evident in the

spin-j decomposition of the latter '(gi) =
P

jTr['
j
{m}

⇣Q
i

p
dj

i

Dj
i

m
i

,n
i

(gi)
⌘
ī j{n} ].

Once we turn o↵ the sum over all possible js, fix the representation labels and ask

them to be equal, generically Fourier transformed GFT fields ' j
{m}, are tensors of single

rank d, with discrete indices mi = {m
1

, . . . ,md} spanning a finite dimensional space. The

– 17 –



Dictionary: Spin-networks as gauge invariant tensors networks

equivalence is resumed in table B:

Table B GFT network Spin Tensor Network Tensor Network

node '(~g)
⌘ '(g

1

, g

2

, g

3

, g

4

)

' j
{m}

/
P

{k} '̂
j
{m}{k} i

j{k}

T{µ}

link M(g†
1

g`g2) M j
mn M�

1

�
2

sym '(h~g) = '(~g)
Qv

s D
j
m

s

m0
s

(g)iim0
1

···m0
v

= iim
1

···m
v

Qv
s Uµ

s

µ0
s

Tµ0
1

···µ0
v

=

Tµ
1

···µ
v

state
���g

`

�

↵ ⌘N
` hMg

`

|Nn | ni
| ji

�

i ⌘N
`hM j

` |Nn |� j
n

i
n

n i
| N i ⌘NL

` hM`|
NN

n |Tni

indices gi 2 G ,

|gi i 2 H ' L2[G]

mi 2 Hj , SU(2) spin-j

irrep.

µi 2 Zn, nth

cyclic group

dim 1 dimHj = 2j + 1 dimZn = n

In the following sections, with the longer-term goal of a full understanding and com-

putation of the RT formula in the field-theoretic GFT context, we are going to use the

inputs provided by the established dictionary between GFT states and (random) tensor

networks to reproduce the RT formula in three di↵erent cases corresponding to three dif-

ferent truncations/approximations, suggested by the established correspondence. In the

next section, we derive a RT formula by calculating the 2nd Rényi entropy, reproducing

the original argument given in [23] for the case of a random tensor network with additional

gauge symmetry described above. Then, we further generalize the approach by means of

the GFT formalism and spin network techniques, as further steps towards the calculation

of the RT formula within a complete quantum gravity setting. We expect the random

character at the core of the original derivation to be naturally captured by our field the-

oretic generalization. In particular, the correspondence will allow us to use the standard

path integral formalism to evaluate the expectation values of entropies and other tensor

observables.

3 Ryu-Takayanagi formula for Random Tensor Networks with Gauge

Symmetry

The Ryu-Takayanagi formula[20], originally derived in the context of the gauge gravity du-

ality, for continuum fields on a smooth background, shows that the entanglement entropy

in d+1 dimensional conformal field theories can be obtained from the area of d-dimensional

minimal surfaces in AdSd+2

. This entropy-area relation is recognised to be of fundamen-

tal importance for at least three key reasons. First, it suggests a convenient approach to

– 18 –



being tensor field theories, GFTS reproduce the structure of very interesting TN states: 
random tensor networks (RTS)

Group Field Random Tensor Networks

|Mi = 1p
D
��1�2 |�1i ⌦ |�2i1 -  maximally entangled link states

tensors Tv are unit vectors chosen independently at random from their respective Hilbert 
spaces. the unique “uniform” unitarily invariant  distribution is induced by the Haar 
measure on the unitary group by acting on an arbitrarily chosen generating vector:

| i ⌘
O
<ij>

hMij |
NO
v

|Tvi

2 -  

|Tvi = U |0vi|0vi         (for arbitrary reference state            define                          with U unitary )     

Hayden et al.arXiv:1601.01694v1   F. Pastawski, B. Yoshida, D. Harlow and J. Preskill
Figure 3. Boundary @N of network N is divided into two parts A and B.

where P(⇡0

A;N, d) is the permutation operator acting on the states in region A,

P(⇡0

A;N, d) =
NY
s=1

�
µ
([s+1]

D

)

A

µ
(s)

A

(3.6)

and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

S
EE

(A) = lim
N!1

SN (A) (3.7)

3.2 S
2

in RTN with Gauge Symmetry

As the first step, let us calculate the S
2

for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.

| N i ()  {�
A

}{�
B

} ⌘  AB (3.8)O
n

|Tni ()
 O

n

Tn

!
{�

A

}{�
B

}{�
C

}

⌘ TABC (3.9)

O
`

hM`| ()
 O

`

M `

!
{�

C

}

⌘ MC (3.10)

So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢AABB =  AB AB (3.12)
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In the large bond dimension limit, RTS saturate the 
TN entropy bound, reproducing the holographic Ryu 
Takanayagi entropy formula

S(A) ' log(D)|�A|

�A

v

3 -  



A relevant example: Random Tensor Networks

holographic behaviour: random tensors networks provide explicit toy 
examples for the surface/state correspondence

=> 

the random average of an arbitrary function f ( Tv ) of the the state | Tv > is equivalent to 
an integration over U according to the Haar probability measure

averages enters linear traces operation, hence simplifying the derivation of the non-
trivial entanglement properties of the states, induced as usual by partial tracing

 - 

 - 

as the system dimension becomes large, random states have typical behaviour - 

key features of the random character:

Hayden et al.arXiv:1601.01694v1

we expect to find a similar behaviour in our GFT setting along with 
Hayden’s statistical approach

=> 



Figure 2. A tensor network � is a set of tensors whose indices are contracted according to a
network pattern. A network pattern can be always represented as a graph, given by a set of nodes
(n) and links (`) connecting nodes. A link is called an internal link when it connects two di↵erent
nodes; while it is called a boundary link when it connects only one node. The number of links that
connect to a node is called the valence of the node..

To such a graph we can associate a generic wavefunction given by a function of d⇥ V

group elements,

�(gia) = �(g1
1

, ..., gd
1

, g1
2

, ..., gd
2

, · · · , g1V , ..., gdV ) (2.19)

defined on the group space Gd⇥V /GV (V copies of Gd, quotiented by the isotropy group of

the single particle function '
(v)(gi) at the each vertex); here the index a runs over the set

of vertices, while the index i still runs over the links attached to each vertex).

These functions are exactly like many-particles wave functions for point particles living

on the group manifold Gd, and having as classical phase space (T ⇤G)d (the classical phase

space of a single open spin network vertex or polyhedron).

Accordingly, a state |�i 2 HV ' L2[Gd⇥V /GV ] can be conveniently decomposed into

products of single-particle (single-vertex) states,

�(gai ) = hgai |�i =
X

�
i

,i=1...V

'�
1

...�
V  �

1

(gi) · · · �
V

(gi) (2.20)

While the above decomposition is completely general, a special class of states can

be constructed in direct association with a graph or network �. The association works as

follows. Start from the d-valent graph with V disconnected components (open spin network

vertices) to which a generic V-body state of the theory is associated. A partially connected

d-valent graph can be constructed by choosing at least one edge i in a vertex a and gluing

it to one edge j of the vertex b, i.e. joining the two edges along their 1-valent vertices.

The final graph will be fully connected if all edges have been glued. Each pair of glued

edges {ai, bj} will identify a link L of the resulting (partially) connected graph. In the

spin representation, i.e. in terms of the basis of functions  �
1

(gi) · · · �
V

(gi), the gluing is

implemented by the identification of the spin labels jai and jbj associated to the two edges

being glued and by the contraction of the corresponding vector indices ma
i and mb

j . In

other words, the corresponding wave functions for closed graphs can be decomposed in a

basis of closed spin network wave functions, obtained from the general product basis by

means of the same contractions:

�
�

(gai ) = hgai |��

i =
X

�
a

,a=1...V

�
j1
i

...jV
i

�

" Y
L2�

�ja
i

,jb
j

�ma

i

,mb

j

!
 �

1

(gi) · · · �
V

(gi)

#
(2.21)
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Let’s consider the boundary state associated to the open spin network graph N

|�N i ⌘
O
`2N

hM`|
VO
n

|�ni 2
O
`2@N

H`

Group Field Random Tensor Networks

the boundary density operator is a linear function of independent pure states of 
each tensor

 - 

⇢ = tr`

"O
`2�

|M`ihM`|
VO
v

|�vih�v|
#

⇢̂A = trB [⇢]/tr[⇢]

to a subregion (A) of the boundary we associate a reduced state

 - 

A



Group Field Random Tensor Networks

we then look for the entanglement entropy of A/B:

e�SN (A) = tr[⇢NA ]/(tr[⇢])N ⌘ ZA/Z0

- 
KEY 1: calculating the Rényi entropy is hard, however  we can use the random 
character of the field to calculate the expectation value of the Rényi: expand in the 
fluctuation

KEY 2: fluctuations are suppressed in the limit of large bond dimension  

random states in high-dimensional bipartite systems: “concentration of measure” 
phenomenon applies, meaning that on a large-probability set macroscopic parameters 
are close to their expectation values (bond/group dimension, => continuum limit)

- 

SN (A) = �log

ZA + �ZA

Z0 + �Z0
= � log

ZA

Z0
+

SEE = �tr[⇢̂A log ⇢̂A] = lim

N!1
SN (A) =

1

1�N
log tr[⇢̂NA ]

( Rényi via replika trick )

- 

where

 1X

n

(�1)n�1

n

�Zn
0

Zn
0

� �Zn
A

Zn
A

!



Group Field Random Tensor Networks

we then look for the entanglement entropy of A/B:

e�SN (A) = tr[⇢NA ]/(tr[⇢])N ⌘ ZA/Z0

- 
KEY 1: calculating the Rényi entropy is hard, however  we can use the random 
character of the field to calculate the expectation value of the Rényi: expand in the 
fluctuation

KEY 2: fluctuations are suppressed in the limit of large bond dimension  

random states in high-dimensional bipartite systems: “concentration of measure” 
phenomenon applies, meaning that on a large-probability set macroscopic parameters 
are close to their expectation values (bond/group dimension, => continuum limit)

- 

SEE = �tr[⇢̂A log ⇢̂A] = lim

N!1
SN (A) =

1

1�N
log tr[⇢̂NA ]

( Rényi via replika trick )

- 

where

SN (A) = �log

ZA + �ZA

Z0 + �Z0
= � log

ZA

Z0
+

' SN (A)



Random Group Field Tensor Networks 

the average over the N-replica of the wave functions (generalised tensors) associated 
to each network vertex can be interpreted as a GFT N-point correlation function

since
ZA

Z0
=

E(tr⇢NA )

E(tr⇢)N =
Etr[⇢⌦NP(⇡0

A;N, d)]

E(tr⇢)N

=
tr
⇥N

` ⇢
N
`

N
n E(⇢Nn )P(⇡0

A;N, d)
⇤

tr
⇥N

` ⇢
N
`

N
n E(⇢Nn )

⇤ ' SN (A)

E(⇢Nn ) = E[(|�nih�n)
N ] = E

" Z NY

a

dgadg
0
a �n(ga)�n(g0

a)|gaihg0
a

!#
we can get SN (A) by computing the expectation values:

in the standard field theory formalism we define the averaging via the path 
integral of some GFT model

E
⇥
f [�,�]

⇤
⌘

Z
[D�][D�] f [�,�] e�S[�,�]

permutation operator 
acting on the states in A

-

-

-

-

+ assuming factorised state



Path integral averaging for the free theory

<<1 and  consider a perturbative expansion of the path integral in powers of 

S[�,�] =

Z
dgdg0 �(g)K(g,g0)�(g0) + �Sint[�,�] + cc

E
"

NY

a

�(ga)�(g0
a)

#
⌘ E0

"
NY

a

�(ga)�(g0
a)

#
+O(�)

Wick theorem

C
X

⇡2SN

Phn(⇡n)

�

 - 

- 

we take the case 

K(g,g0) = �(g†g0)with

�

the free theory N points correlation function translates into a sum over all permutations among 
the group elements attached at each node

Ph(⇡) =
NY

a

�
⇣
hagag

†
⇡(a)

⌘
with

A B

—
A B

—

AB

—
AB

—
tr[⇢2A] = tr[⇢⌦ ⇢PA]



equal footing, unlike g
1

= 1 in the gauge fixing procedure. So in the following calculation,

the network is without gauge fixing, i.e. all integrals of g have to be performed.

Denote now
QN

a �
⇣
hagag⇡(a)

†
⌘
as

Ph(⇡) ⌘
NY
a

�
⇣
hagag⇡(a)

†
⌘
=

4Y
s=1

NY
a

�
⇣
hagsags⇡(a)

†
⌘
⌘

4Y
s

Ps
h(⇡) , (4.15)

where h denotes the set of ha, a = 1, · · · , N . When ha = 1 for all a from 1 to N ,

P1(⇡) =
NY
a

�
⇣
gag⇡(a)

†
⌘
= P(⇡;N,D4) =

4Y
s

Ps(⇡;N,D4) (4.16)

where P(⇡;N,D4) and Ps(⇡;N,D4) are the representations of ⇡ 2 SN on H⌦4 and H,

respectively.

Then, ZN and ZN
0

become

ZN ⇡ CV
�

X
⇡n2S

N

Z Y
n

dhn Tr

"O
`

⇢N`
O
n

Ph
n

(⇡n)P(⇡
0

A;N, d)

#

⌘ CV
�

X
⇡n2S

N

Z Y
n

dhn NA(hn,⇡n) (4.17)

ZN
0

= CV
�

X
⇡n2S

N

Z Y
n

dhn Tr

"O
`

⇢N`
O
n

Ph
n

(⇡n)

#

⌘ CV
�

X
⇡n2S

N

Z Y
n

dhn N
0

(hn,⇡n) , (4.18)

which means that ZN and ZN
0

correspond to summations of the networks NA(hn,⇡n) and

N
0

(hn,⇡n) where at each node n we have a contribution Ph
n

(⇡n) and at each link ` we

have a contribution ⇢N` . The only di↵erence between these two networks is the boundary

condition: where ZN is defined with P(⇡0

A;N, d) on A of @� and P(1;N, d) on A of @�,

and ZN
0

is defined with P(1;N, d) for all boundary region @�.

Since at each node Ph
n

(⇡n) is decoupled among the incident legs, because of (4.15), the

value of the networks NA(hn,⇡n) and N
0

(hn,⇡n) can be written as products factorised

over links:

NA(hn,⇡n) =
Y
`2�

L`(⇡n,⇡n0 ;hn,hn0)
Y
`2A

L`(⇡n,⇡
0

A;hn)
Y
`2A

L`(⇡n,1;hn) (4.19)

N
0

(hn,⇡n) =
Y
`2�

L`(⇡n,⇡n0 ;hn,hn0)
Y
`2@�

L`(⇡n,1;hn) . (4.20)

Because the L` on the boundary are special cases of the L` in the graph �, it is enough to

calculate the L` on the internal links. In general, L(⇡,⇡0,h,h0) can be written as a trace

of a modified representation of a permutation group element $ ⌘ (⇡0)�1⇡ as

L(⇡,⇡0;h,h0) = Tr
⇥
Ph(⇡)⇢

N
` Ph0(⇡)

⇤
= Tr

⇥
PH

�
(⇡0)�1⇡

�⇤ ⌘ Tr [PH ($)] , (4.21)
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ZA and Z0
 correspond to summations of the combinatorial  networks NA(hn, πn) and N0(hn,πn)

at each node n we have a contribution Phn(πn)

links contribution

Figure 9. An example of pattern

Altogether, for a given network N (hn,⇡n), defining the new variables $ ⌘ (⇡0)�1⇡ and

H given by (4.22) for each link, the corresponding link value is a product of �($) delta

function

L(⇡,⇡0;h,h0) ⌘ L($;H) = Tr [PH ($)] =

�($)Y
i

�

0@ �riY
k=1

Hai
k

1A (4.36)

In particular, when ⇡ = ⇡0, the link value L(⇡,⇡;h,h0) is given by a product of N delta

functions as shown in (4.23) and we re-present it here

L(⇡,⇡;h,h0) =
NY
a

�
⇣
(h0a)

†ha
⌘
=

NY
a

� (Ha) , (4.37)

which is non-zero only when h = h0.

So in the end the network is divided into several regions, in each of which ⇡n and hn are

the same. The links which connect di↵erent regions identify boundaries between each pair

of di↵erent regions, called again domain walls. Corresponding to di↵erent domain walls

and di↵erent assignments of permutation groups to each region, we have di↵erent patterns

for the given network. We introduce pattern functions PA(⇡n) and P
0

(⇡n) such that

PA(⇡n) ⌘
Z Y

n

dhn NA(hn,⇡n) (4.38)

P
0

(⇡n) ⌘
Z Y

n

dhn N
0

(hn,⇡n) . (4.39)

Given a set of {⇡n}, PA(⇡n) and P
0

(⇡n) correspond to a certain network pattern with

fixed boundary conditions, illustrated in the following figure.

More explicitly,

PA(⇡n) =

Z Y
n

dhn

Y
`2�

24�($
`

)Y
i

�

0@ �riY
k=1

H`ai
k

1A35Y
`2A

24�(C�1

0

⇡
n`

)Y
i

�

0@ �riY
k=1

h`ai
k

1A35Y
`2A

24�(⇡
n`

)Y
i

�

0@ �riY
k=1

h`ai
k

1A35
(4.40)

P
0

(⇡n) =

Z Y
n

dhn

Y
`2�

24�($
`

)Y
i

�

0@ �riY
k=1

H`ai
k

1A35 Y
`2@�

24�(⇡
n`

)Y
i

�

0@ �riY
k=1

h`ai
k

1A35 (4.41)
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the (Feynman )networks get divided into several regions, with 
same  πn and hn. The links which connect different regions identify 
boundaries between each pair of different regions or domain walls.

for different domain walls and different assignments of permutation 
groups to each region, we have different patterns for given network

Path integral averaging for the free theory

ZA and Z0
 are sum of BF amplitudes with different 2-complexes

AA

 - 

 - 

 - 

=>



Path integral averaging for the free theory

this simple form of the various functions entering the calculation of the entropy, with the 
emergence of BF-like amplitudes, is not generic: it follows from the choice of GFT kinetic 
term, from the approximation used in the calculation of expectation values (neglecting GFT 
interactions) and from the special type of GFT tensor network chosen

we are interested in is the leading term of ZA and Z0
 , while taking the dimension D of the 

bond Hilbert space much larger than 1. This leads us to seek the most divergent term of 
the amplitudes (bubble divergences)

Freidel, Gurau, Oriti 09, Bonzom and Smerlak 10-12

the divergence degree of BF amplitudes discretised on a lattice has been 
the subject of a number of works, both in the spin foam an GFT literature

Finally, the Nth order Rényi entropy SN is then:

e(1�N)S
N =

ZN

ZN
0

= [�(1)](1�N)min(#

`2@

AB

)

⇥
1 +O(��1(1)) +O(�)

⇤
. (4.71)

When N goes to 1, SN becomes the entanglement entropy S
EE

. The leading term of the

entanglement entropy S
EE

is therefore

S
EE

= min(#`2@
AB

) ln �(1) , (4.72)

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the same

interpretation for the area of the minimal surface that we have mentioned in the previous

section, concerning the tensor network techniques.

Before moving on to a di↵erent derivation of the same result, we want to clarify the inter-

pretation of this calculation.

The definition of the expectation value (4.5) in the GFT language shows that the expo-

nential of SN can be interpreted as a GFT 2N -point function, at least within the limits of

the approximation made, focusing on the average over group field functions at each node,

without recasting the whole generalized tensor network as a GFT correlation function. As

shown in previous sections, the GFT amplitudes can in turn be written, by standard per-

turbative expansion, as a sum of Feynman amplitudes associated to Feynman diagrams,

each of which corresponds to a di↵erent discretized “space-time”with fixed boundary, with

the Feynman amplitude defining (for quantum gravity models) a lattice path integral for

gravity discretised on the corresponding cellular complex. This allows a tentative (and par-

tial) interpretation of the entropy formula we have derived, in geometric spatiotemporal

terms. It implies, in fact, that, in the calculation of the entropy, not only the information

of a time-slice of a space-time is considered, as encoded in a given network, but also its

full quantum dynamics. This, at least, is true when the complete GFT partition function

(for quantum gravity models) is employed in the computation of the entropy. The leading

term, the free GFT amplitude, captures only a sector of that full quantum dynamics. With

the specific (trivial) choice of kinetic term we have used, the quantum dynamics can at

best correspond to (summing over) static space-times. When N goes to 1, in particular,

the amplitude becomes the trivial propagation of GFT states, with any given network

propagating to itself. This corresponds exactly to the context (static space-time) in which

the Ryu-Takayanagi formula is usually derived. In other words, our calculation provides a

realization of the Ryu-Takayanagi formula, at least in one extremely simple case, within the

full dynamics of a non-perturbative approach to quantum gravity, the group field theory

formalism, which can also be seen as a di↵erent definition of loop quantum gravity. Our

result also shows that the same formalism allows to compute non-perturbative quantum

gravity corrections to the Ryu-Takayanagi formula, by including the contributions from

the GFT interaction term into the amplitude (as well as considering di↵erent choices for

the GFT kinetic term).
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the Nth Rényi entropy SN is associated to patterns with only one domain wall and hn=1

remark

-

=>

-



which can be understood as the Ryu-Takayanagi formula in a GFT context, with the 
same interpretation for the area of the minimal surface that we have mentioned in 
the previous section, concerning the tensor network techniques.

Finally, the Nth order Rényi entropy SN is then:

e(1�N)S
N =

ZN

ZN
0

= [�(1)](1�N)min(#

`2@

AB

)

⇥
1 +O(��1(1)) +O(�)

⇤
. (4.71)

When N goes to 1, SN becomes the entanglement entropy S
EE

. The leading term of the

entanglement entropy S
EE

is therefore

S
EE

= min(#`2@
AB

) ln �(1) , (4.72)

which can be understood as the Ryu-Takayanagi formula in a GFT context, with the same

interpretation for the area of the minimal surface that we have mentioned in the previous

section, concerning the tensor network techniques.

Before moving on to a di↵erent derivation of the same result, we want to clarify the inter-

pretation of this calculation.

The definition of the expectation value (4.5) in the GFT language shows that the expo-

nential of SN can be interpreted as a GFT 2N -point function, at least within the limits of

the approximation made, focusing on the average over group field functions at each node,

without recasting the whole generalized tensor network as a GFT correlation function. As

shown in previous sections, the GFT amplitudes can in turn be written, by standard per-

turbative expansion, as a sum of Feynman amplitudes associated to Feynman diagrams,

each of which corresponds to a di↵erent discretized “space-time”with fixed boundary, with

the Feynman amplitude defining (for quantum gravity models) a lattice path integral for

gravity discretised on the corresponding cellular complex. This allows a tentative (and par-

tial) interpretation of the entropy formula we have derived, in geometric spatiotemporal

terms. It implies, in fact, that, in the calculation of the entropy, not only the information

of a time-slice of a space-time is considered, as encoded in a given network, but also its

full quantum dynamics. This, at least, is true when the complete GFT partition function

(for quantum gravity models) is employed in the computation of the entropy. The leading

term, the free GFT amplitude, captures only a sector of that full quantum dynamics. With

the specific (trivial) choice of kinetic term we have used, the quantum dynamics can at

best correspond to (summing over) static space-times. When N goes to 1, in particular,

the amplitude becomes the trivial propagation of GFT states, with any given network

propagating to itself. This corresponds exactly to the context (static space-time) in which

the Ryu-Takayanagi formula is usually derived. In other words, our calculation provides a

realization of the Ryu-Takayanagi formula, at least in one extremely simple case, within the

full dynamics of a non-perturbative approach to quantum gravity, the group field theory

formalism, which can also be seen as a di↵erent definition of loop quantum gravity. Our

result also shows that the same formalism allows to compute non-perturbative quantum

gravity corrections to the Ryu-Takayanagi formula, by including the contributions from

the GFT interaction term into the amplitude (as well as considering di↵erent choices for

the GFT kinetic term).
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When N goes to 1, SN becomes the entanglement entropy SEE. The leading term of the 
entanglement entropy SEE  is

Figure 3. Boundary @N of network N is divided into two parts A and B.

where P(⇡0

A;N, d) is the permutation operator acting on the states in region A,

P(⇡0

A;N, d) =
NY
s=1

�
µ
([s+1]

D

)

A

µ
(s)

A

(3.6)

and d is the dimension of the Hilbert space in the same region A.

The replica trick is useful because the Rényi entropy SN , which is easier to compute,

coincides with the von Neumann entropy of region A, and thus with the entanglement

entropy between regions A and B, in the limit Nrightarrow1

S
EE

(A) = lim
N!1

SN (A) (3.7)

3.2 S
2

in RTN with Gauge Symmetry

As the first step, let us calculate the S
2

for a give tensor network state | N i. The tensor

network state | N i is given by (2.32), which is in the Hilbert space of H@N . States can be

written in terms of index notation.

| N i ()  {�
A

}{�
B

} ⌘  AB (3.8)O
n

|Tni ()
 O

n

Tn

!
{�

A

}{�
B

}{�
C

}

⌘ TABC (3.9)

O
`

hM`| ()
 O

`

M `

!
{�

C

}

⌘ MC (3.10)

So based on the definition (2.32), the tensor network state is rewritten as

 AB = MCTABC (3.11)

where we divide the boundary @N into two parts, labeled as A and B.

All links are internal links that contract with nodes. The density matrix corresponding

to  AB is

⇢AABB =  AB AB (3.12)
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�A

Path integral averaging for the free theory

the interaction kernel will generally lead to non-trivial bulk corrections!

A B

—
A B

—
tr[⇢]2

A B

—
A B

—

4-body

Mingyi’s talk later!



establish a precise dictionary between GFT states and (generalized) random tensor 
networks. Such a dictionary also implies, under different restrictions on the GFT 
states, a correspondence between LQG spin network states and tensor networks, 
and a correspondence between random tensors models and tensor networks.

compute the Rényi entropy and derived the RT entropy formula:  

-  using directly GFT and spin network techniques, first using a simple 
approximation to a complete definition of a random tensor network evaluation 
seen as a GFT correlation function, but still using a truly generalized tensor 
network seen as a GFT state, and then considering directly a spin network state as 
a random tensor network. This elucidates further the correspondence and its 
potential

Results

the result shows that the same formalism allows to compute non-perturbative 
quantum gravity corrections to the Ryu-Takayanagi formula, by including the 
contributions from the GFT interaction term into the amplitude (as well as 
considering different choices for the GFT kinetic term).

Mingyi’s talk later!



AdS/MERA/CFT may be extended, beyond AdS/CFT, to a more general space/TNR/QFT 
correspondence: GFTs may play a role as auxiliary tensor field theories both fixing the 
entanglement structure of the boundary physical theory and providing a dual simplicial 
characterisation of the tensor network diagrams as discretised space 

dynamics induces entanglement: looks like standard multi scale renormalisation techniques 
may be associated to cMERA within the field theory framework of GFTs: what would play 
the role of the MERA-like renormalisation scale (radial dimension)?

Remarks/Speculations

the structural similarity had been noted before, and also exploited, in the context of 
renormalization of spin foam models treated as lattice gauge theories  

G. Vidal,(2008), S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a 
global symmetry, G. Evenbly and G. Vidal, Tensor network states and geometry;  M. Han and L.-Y. Hung, 
Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy, B. Dittrich, S. 
Mizera, and S. Steinhaus, Decorated tensor network renormalization for lattice gauge theories and spin 
foam models,  C. Delcamp and B. Dittrich, Towards a phase diagram for spin foams,  B. Dittrich, F. C. Eckert, 
and M. Martin-Benito, Coarse graining methods for spin net and spin foam models, B. Dittrich, E. Schnetter, 
C. J. Seth, and S. Steinhaus, Coarse graining flow of spin foam intertwiners
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1. Permutation of the indices of a tensor, Eq. 1.

2. Reshape of the indices of a tensor, Eqs. 2-3.

3. Multiplication of two matrices, Eq. 4.

4. Decomposition of a matrix (e.g. singular value decom-
position (11) or spectral decomposition (12)).

These operations constitute a set P of primitive operations
for tensor network manipulations (or, at least, for the type of
manipulations we will be concerned with).

In Section IV we will discuss how this set P of primitive
operations can be generalized to tensors that are symmetric
under the action of the group U(1).

E. Tensor network states for quantum many-body systems

As mentioned in the introduction, tensor networks are used
as a means to represent the wave-function of certain quantum
many-body systems on a lattice. Let us consider a lattice L
made of L sites, each described by a complex vector space
V of dimension d. A generic pure state | i 2 V⌦L of L can
always be expanded as

| i =
X

i1,i2,··· ,iL

 ̂i1i2···iL |i1i|i2i · · · |iLi, (14)

where is = 1, · · · , d labels a basis |isi of V for site s 2 L.
Tensor  ̂, with components  i1i2···iL , contains dL complex co-
e�cients. This is a number that grows exponentially with the
size L of the lattice. Thus, the representation of a generic pure
state | i 2 V⌦L is ine�cient. However, it turns out that an
e�cient representation of certain pure states can be obtained
by expressing tensor  ̂ in terms of a tensor network.

Fig. 7 shows several popular tensor network decomposi-
tions used to approximately describe the ground states of lo-
cal Hamiltonians H of lattice models in one or two spatial
dimensions. The open indices of each of these tensor net-
works correspond to the indices i1, i2, · · · , iL of tensor  ̂. No-
tice that all the tensor networks of Fig. 7 contain O(L) tensors.
If p is the rank of the tensors in one of these tensor networks,
and � is the size of their indices, then the tensor network de-
pends on O(L�p) complex coe�cients. For a fixed value of
� this number grows linearly in L, and not exponentially. It
therefore does indeed o↵er an e�cient description of the pure
state | i 2 V⌦L that it represents. Of course only a subset
of pure states can be decomposed in this way. Such states,
often referred to as tensor network states, are used as vari-
ational ansätze, with the O(L�p) complex coe�cients as the
variational parameters.

Given a tensor network state, a variety of algorithms (see
e.g. Refs. 4-49) are used for tasks such as: (i) computation of
the expectation value h |ô| i of a local observable ô, (ii) op-
timization of the variational parameters so as to minimize the
expectation value of the energy h |Ĥ| i, or (iii) simulation of
time evolution, e.g. e�iĤt | i. These tasks are accomplished
by manipulating tensor networks.

FIG. 7: Examples of tensor network states for 1D systems: (i) matrix
product state (MPS), (ii) tree tensor network (TTN), (iii) multi-scale
entanglement renormalization ansatz (MERA). Examples of tensor
network states for 2D systems: (iv) projected entangled-pair state
PEPS, (v) 2D TTN. (2D MERA not depicted).

On most occasions, all required manipulations can be re-
duced to a sequence of primitive operations in the set P intro-
duced in Sec. II D. Thus, in order to adapt the tensor network
algorithms of e.g. Refs. 4-49 to the presence of a symmetry,
we only need to modify the set P of primitive tensor network
operations. This will be done in Sec. IV.

F. Tensors as linear maps

A tensor can be used to define a linear map between vec-
tor spaces in the following way. First, notice that an index i
can be used to label a basis {|ii} of a complex vector space
V[i] � C|i| of dimension |i|. On the other hand, given a tensor
T̂ of rank k, we can attach a direction ‘in’ or ’out’ to each in-
dex i1, i2, · · · , ik. This direction divides the indices of T̂ into a
subset I of incoming indices and the subset O of outgoing in-
dices. We can then build input and output vector spaces given
by the tensor product of the spaces of incoming and outgoing
indices,

V[in] =
O
il2I
V[il], V[out] =

O
il2O
V[il], (15)

and use tensor T̂ to define a linear map between V[in] and
V[out]. For instance, if a rank-3 tensor T̂abc has one incom-
ing index c 2 I and two outgoing indices a, b 2 O, then it
defines a linear map T̂ : V[c] ! V[a] ⌦ V[b] given by

T̂ =
X
a,b,c

T̂abc|ai|bihc| (16)

Graphically, we denote the direction of an index by means of
an arrow; see Fig. 8(i).

By decorating the lines of a tensor network N with arrows
(Fig. 8(ii)), this can be regarded as a composition of linear

(dis)entanglers
isometries implementing coarse graining

network geometry resembles a discretization of spatial slices of an AdS spacetime and 
``geodesics'' in the MERA reproduce the Ryu-Takayanagi formula for the entanglement 
entropy of a boundary region in terms of bulk properties    =>  AdS/MERA

min�A [# bonds(�A)] ⇠ logL

�A

A(L)


