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Local quantum field theory

Quantum gravity should have a flat space limit: in this limit it should
reproduce local quantum field theory.

Quantum field theory is a theory of gauge invariant, local operators O.

e.g. φ, ψ̄ψ, Fµν , F aµνF
aµν , trPei

∫
γ
A, . . .

Locality in this theory is encoded by the axiom of microcausality:

When x and x′ are
spacelike separated,

[O(x),O(x′)] = 0

x

x′

Observables in a region form an algebra, these define local subsystems.
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Diffeomorphism-invariant observables

In gravity, observables must be diffeomorphism invariant.

Exact diffeomorphism-invariant observables are hard to construct.

• Dressed operators in QED [Dirac].

• Using a reference frame of dust [Brown & Kuchǎr].

• GPS observables [Rovelli].

• Perturbative observables [Dittrich & Tambornino].

• Observables in Gaußian normal coordinates
[Bodendorfer, Duch, Lewandowski, & Świeżewski].

Observables are specified relative to some reference such as matter fields,
or an asymptotic region.
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Questions

• What operators in quantum gravity reduce to φ(x) as G→ 0?

• What are corrections to microcausality when G > 0?

• How can we define locality and subsystems in quantum gravity?

Outline

• Construction of gravitationally dressed observables perturbatively
in asymptotically flat spacetime.

• Corrections to microcausality.

• A bound on locality: the Dressing Theorem.

• Implications for local information and subsystems.
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Perturbative gravity

Consider perturbative gravity coupled to a real scalar field of mass m:

L =
2

κ2
R− 1

2
(∇φ)2 − 1

2
m2φ2 + Lgauge fixing.

Expand the metric about flat spacetime,

gµν = ηµν + κhµν .

We expand
√
gL in κ =

√
32πG, keeping the matter-gravity coupling.

Commutators of φ and of hµν are causal.

The fields transform under a linearized diffeomorphism κξµ as:

φ→ φ− κξµ∂µφ,
hµν → hµν − ∂µξν − ∂νξµ.

Since φ(x) is not invariant we have to construct a dressed operator.
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A note on Dirac brackets

One common approach to defining observables involves Dirac brackets.

• First, fix the gauge completely.

• Reduce the phase space (solve the constraints & gauge conditions).

• Now everything is gauge invariant.

• Replace Poisson brackets with nonlocal Dirac brackets.

Dirac brackets are doing two things at once:

• Implicitly replacing operators with dressed versions.

• Calculating Poisson brackets of the dressed operators.

Instead we will follow a more transparent approach:

• Construct manifestly diffeomorphism-invariant dressed operators.

• Calculate their (causal) Poisson brackets.
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Gravitational Wilson line

To define an invariant observable, start at a fixed “platform” z = Z.
Shoot a geodesic from (x⊥, Z) a proper distance Z − z.
Measure φ at the endpoint.

This prescription defines a diffeomorphism-invariant dressing of φ(x).

Solving the geodesic equation perturbatively:

ΦW (x) = φ(x) + V µW (x)∂µφ(x),

V µW (x) = −
∫ ∞

0

ds s Γµzz(x+ sẑ)

This is invariant under diffeomorphisms ξ
such that ξµ = 0, ∂νξ

µ = 0 at the platform.

xµ

xµ + V µ

Platform

This observable is very singular, and not sufficiently invariant.
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Gravitational Coulomb dressing

To make a symmetric dressing, we can average over all directions:

ΦC(x) = φ(x) + V µC (x)∂µφ(x),

V µC (x) = − 1

4π

∫
d3x′

1

|x− x′|
Γµαβ(x′)r̂αr̂β

This operator is more well-behaved. What does it do?

To find the gravitational field created, consider the commutator:

[hµν(x′),ΦC(x)] = [hµν(x′), V λC (x)]∂λφ(x)

The metric depends on derivatives of φ; gravity couples to momentum.

ΦC creates a φ particle plus its quantum gravitational field:
it creates a superposition of particles with different momenta,
entangled with a superposition of different gravitational fields.
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Microcausality

How does the nonlocal dressing affect microcausality?

Consider the equal-time commutator for x 6= x′:

[ΦC(x), Φ̇C(x′)] = [V µC (x), V̇ νC (x′)]∂µφ(x)∂νφ(x′) +O(κ3)

In the nonrelativistic limit, we can replace ∂µφ(x)→ δ0
µimφ

[ΦC(x), Φ̇C(x′)] ∼ [V 0
C(x), V̇ 0

C(x′)]m2φ(x)φ(x′)

=
Gm2

|x− x′|
φ(x)φ(x′)

Corrections to microcausality are related to the Newtonian potential.
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The Dressing Theorem

Theorem [WD & Giddings 2016]

Let O be a diffeomorphism-invariant operator, with κ expansion

O = O(0) + κO(1) + · · ·

If O(0) has a nonzero commutator with a spacetime translation
generator, then the dressing falls off no faster than a monopole:

δO(1)

δgµν
∼ 1

r
.

Note: Any compactly supported operator must have nonzero
commutator with P i.

Proof: Consider commutator of O with the Poincaré generators.
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Poincaré charges

In gravity, the conserved charges are the 10 Poincaré generators:

P 0 =
2

κ

∮
S

dA r̂i [∂jhij − ∂ihjj ] ,

P i = − 2

κ

∮
S

dA r̂j [∂0hij − δij∂0hkk + ∂ih0j − ∂jh0i] ,

Lij = − 2

κ

∮
S

dA r̂k
[
xi(∂0hjk − ∂kh0j) + h0jδik

]
− (i↔ j),

Ki =
2

κ

∮
S

dA r̂j
[
xi(∂khjk − ∂jhkk)− hij + hkkδij

]
These are the energy, momentum, angular momentum
and the Beig-O’Murchadha-Regge-Teitelboim center of mass.

These all take the form of integrals of h over spatial infinity.
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The Dressing Theorem

Proof: Let O = O(0) + κO(1) + . . . be diffeomorphism invariant.
We can write the 4-momentum as a boundary term on-shell:

Pµ :=

∫
Σ

εΣT
µ
νn

ν =
1

κ

∮
S

Bµλαβ∂λhαβ + constraints.

Since O is diffeomorphism invariant, it commutes with the constraints:

[Pµ,O] =
1

κ

∮
S

Bµλαβ [∂λhαβ ,O]

Now consider the leading term at order κ0:

[Pµ,O(0)] =

∮
S

Bµλαβ [∂λhαβ ,O(1)]

[Pµ,O(0)] is nonzero, so O(1) must depend on the asymptotic metric.

To make the integral nonzero, the dependence of the dressing O(1) on
the metric cannot decay faster than 1/r.
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Localized information and subsystems

Gauge-invariant degrees of freedom are nonlocal.

Algebraic definition of subsystems fails even perturbatively.

What do we do?

• Abandon locality (S-matrix, AdS/CFT) c.f. talk by Jamie Sully.

• Refine our notion of subsystems.

How much independent information is encoded in a region of space?

How much information is accessible outside?
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Local classical information

Claim: Given a classical matter distribution Tµν with compact support
U , there is a solution of the linearized constraints whose gravitational
field outside U only depends on the Poincaré charges.

Proof (sketch):
For simplicity, consider point sources at positions riA with momenta pµA.
Dress them with gravitational Wilson lines starting from the origin:

h̃µν =
∑
A

[hµν , P
λ
AVλ(riA)]

h̃µν solves the constraints except at the
origin, where the constraints are proportional
to the Poincaré charges.

We can carry these charges away with a
Wilson line from the origin to ∞.

U

∞

Classically, we can screen higher multipoles: all we can learn about a
matter distribution from outside are the Poincaré charges.
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Translation argument

Could we have two states |ψ1〉 , |ψ2〉 that give the same expectation
values for all observables localized outside a compact region U , but
different expectation values for some operator O(x) inside the region?

The translation generator P is an operator outside U . So given the
operator O(x′) supported outside U , we can consider

〈ψ1| e−i(x−x
′)·PO(x′)ei(x−x

′)·P |ψ1〉 = 〈ψ1| O(x) |ψ1〉

Any information in U can be
extracted by translation.

U

|ψ?〉 O(x′)

Note: This is really a nonperturbative argument. Translating in this way
requires O to be dressed to all orders, since eiP is not analytic in κ.
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Covariant definition of subsystems

There appears to be no suitable invariant definition of local subsystems.
However, we can introduce a covariant definition [WD & Freidel 2016].

Define a phase space with variables (gµν , X
µ):

• gµν is a solution to Einstein’s equation on a domain in M .

• Xµ : S2 →M gives the location of its codimension-2 boundary.

The boundary Xµ transforms covariantly under diffeomorphisms.
Xµ defines a reference frame with which we can define observables.

gµν ← Xµ

Subsystems include edge mode degrees of freedom, new symmetries . . .
See talks by Freidel, Pranzetti, Hopfmüller.
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Conclusion

• In quantum gravity, local operators must be gravitationally dressed.

• This dressing leads to violations of microcausality at order G.

• Gravitational dressing of compactly supported operators must extend
to infinity, and cannot decay faster than 1/r.

• Classically, the only information accessible outside a region are the
Poincaré charges.

• In the quantum theory, we can access information nonlocally
through translations.

• This suggests that local subsystems are not an invariant, but a
covariant concept.

Thank you!
(See you at Loops 2027)
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