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Introduction

Q. How to recognize semiclassical states in quantum gravity?

Mean Va|ueS <(A]ab(n)> _ (_]ab(n) } Iarge scales
Peakedness ((AGap(n))?) < € Gab (X
Correlations (Gab(M)Gab(n)) — Gab(M)Gap(n) = (hap(m)hap(n) } ; )
R ab\ X
Fluctuations:  hap(m) = Gap(mM) — Gap(m)

discrete geometry classical spacetime Lmear.lzed gravity on
(Regge, twisted) classical spacetime

spin netwok state
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‘ Fluctuatlons of the quantum geometry should match the quctuat:ons of
‘ Imearlzed grav:ty on the mean n geometry at Iarge scales |




Introduction

Q. How to recognize semiclassical states in quantum gravity?

¢ Fluctuations display long-range correlations: (h(m)h(n)) o 1 /d(m,n)?

Behavior of two-point function for general states in QFT on curved spaces is universal
in small scales ¢ < R,,qo (Hadamard condition). Asymptotic form for sufficiently close
points should be valid for Ly < ¢ in quantum gravity.

+ Entanglement entropy satisfies an area law. See(R) o< A(OR)

Bianchi-Myers Conjecture: Area law a characteristic feature of semiclassical states in QG.

"Entanglement as the architecture of spacetime" [Bianchi, Myers 'l 4]

+ Disentangling QG dofs breaks connectivity of space [van Raamsdonk ’10].

+ Geometry from entanglement in LQG [Chirco et al ’17].



Introduction

Q2. How to construct semiclassical states in LQG?

Bosonic representation: LQG in terms of constrained harmonic oscillators [Girell
Livine '05].

Simplest class of states with

Coherent states = . . :
arbitrary |-point functions

Simplest class of states with
arbitrary 2-point functions

Squeezed states

+ Squeezed states in bosonic representation — Squeezed spin networks

% Take coherent and squeezed spin networks as candidate semiclassical
states. Search for sector with long-range correlations and area law for the
entanglement entropy.



Plan of the talk

|. Bosonic representation of LQG
2. Squeezed spin network states

3. Long range correlations in cubulations



Part One

The bosonic representation



Bosonic representation [Gireli Livine CQG 22 (2005)]

Hilbert space of LQG on a graph I': Hr = L2[SUQ)L/sU)N] = y(Uy,...,U)

At each link, basis of Wigner matrices: jmn) = Dip,(Up) gauge invariant

First transformation

jmn) jm) i)

® e ~ e —e |
S t S t Area matching: ¢, =/ — ;=0

2 L 2L
L [SU(Z) ] C Hspin

Second transformation (Schwinger model)

jm)  |jn) j+m) i+ My ~ Hoee = Hs

A N ~ o et Of\jTm [ _1\j—m
® U \V ® T ® P PY ® ‘.Im> — (G ) (G )
S t v (G+m)l(j—m)!

j—m)  lji=n)

- LQG states on 1'mapped into states of a bosonic lattice with 4L oscillators.




Bosonic representation

Holonomy-flux algebra

Wilson loops

Bosonic variables: a dl A=0,1

LQG Hilbert space:  Hr = Pg Py Hix

Y

Gauss constraint ~ Area matching constraint

ﬁ | At I,:l At B

=5 0ma a 5048 G i = (np)

(he)'s = (2l + 1) 2 (*“afcaly — eacaf af) (2 + 1)

Wa = tr (hjajhja) -1 - - i)

We = HWak , for mUItiIOOpS O = {Oé|,052, . }
k

[Livine, Tambornino JMP 53 (2012) and PRD 87 (2013)]
[Bianchi, Guglielmon, Hackl, NY, PRD 94 (2016) and 1605.05356]
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LOOP expanSiOn [Bianchi, Guglielmon, Hackl, NY, PRD 94 (2016)]

New structure: Notion of normal order in the bosonic representation.

— Normal-ordered Wilson loop :Wg: |0) = F&]O) = |P)

w
Wedge operator Fv = Fj = easd'a)
Loop operator Fo =11, Fw,
a?
Multiloop operator Fo =11, Fo <. J
€AB
o
A

Wedge operators F;, F; the same as in U(N) formalism.

[Freidel, Livine JMP 51 (2010) and JMP 52 (201 I); Dupuis, Livine CQG 28 (201 )]

Loop expansion

_ | i
= o L T+t el O




Loop expansion of the projector

Provides resolution of the identity in a basis of loop states in Hp

V)= al®), =
P

[1e(2je) T 1,Un + 1!

Overcompleteness of loop basis can be managed with new loop states.

+ Retracing identities automatically solved. For loops with tails, loop state vanishes.

O - C- S

Only one loop in each equivalence class
retracing identity contributes to the loop expansion.

+ Local Mandelstam identities encoded in Plucker identities for F’'s at common node.

|O O> - |C:C>> + ‘CX)> — FiiFi = FicFy 4 FiiFy

At each node: Pliicker identities
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Entanglement entropy

+ Locality in I': quantum polyhedra as atoms of space (twisted geometries).

Intertwiner space = quantization of classical phase of polyhedron [Bianchi, Dona, Speziale PRD83 (201 1)]
States on fixed graph as quantum twisted geometries [Freidel, Speziale PRD82 (2010), Rovelli PRD82 (2010)]

Local algebra of observables at node n

~ generated by operators of 2|n| oscillators.
. Hs = R 7242In]
Quantum polyhedron Intertwiner space H, S = &y, Tlosc

+ Decomposition of I':two complementary sets of nodes V4 and Vs

V=VyUWs = Hs =Hs® Hp

pa = Trp (|¥)(¥])

Entanglement entropy:  Sp = —'Tra|pa log pal
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Part Two

Squeezed spin network states



Squeezed spin network states

% Construction of squeezed spin networks:

|. Start with reference vacuum (AL)

0) = |AL)

2.Squeeze

Symplectic transformation

Squeezed vacuum

3. Project to LQG space

PrU(M)|0)

M: V-V

U(M)|0)
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At each oscillator, local bosonic fields ¢;, 7;

Symplectic structure: Qg = {&, &}, € = (o, )

Space of linear observables spanned by
local fields is a symplectic vector spaceV.



Symplectic group and squeezing

Bosonic space Hs carries a representation of the symplectic group Sp(8L, R).

|
Generators EB = > ( Mg B+ dP AT) Preserve vacuum

Symblectic algebra
(Symp gebra) I_-’AB _ af\ ajB FABT AT B

, qj Squeezing

Under a symplectic transformation, reference vacuum transforms into a
squeezed state. It is sufficient to consider M., € Squeeze(]).

Bosonic squeezed state: v) = UM,)|0) o exp (WABG TaBT) 0)

+ Parametrized by two-point functions.
+ Entanglement entropy as a simple function of 7 [Bianchi, Hackl, NY PRD92 (2015)].

+ Ground states of quadratic Hamiltonians. Area law states if Hamiltonian is local.
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Projection to LQG space

Squeezed spin ', ~v) = Pr eXp[WZBaf\TafT] 0)
network state —_——

bosonic squeezed state

. | dtz d*z | ABo
Loop expansion Cp = / T Zo e~ % 7T 17 ZaZy

12! T1,Un +1)! 7T

Loop amplitudes can be computed for local squeezing matrix and its perturbations.

Small squeezing T,9) =0)+ ) a FL|0) + ) ey F1[0)
strong coupling - -
expansion + Z Co FETj|O> + Z @Fé]()} -+ Z Cao FéFé]O) —
- O 0o

More on squeezed spin network states: See Hackl’s talk, 16:25
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Part Three

Long range correlations



Semiclassical states for cubic lattice

+ Geometry of a cubic lattice described with spinor variables:

T 3 3d vectors from spinors:
- 4
> _ | . _aB 2
N - , V(z) = EO'ABZAZ , zeC
6 Z,, =2,, V(z,)arethe =X directions
+ Semiclassical states:
|. Coherent states z) = Prexp(Az}'d)))[0)
2. Squeezed states v) = Prexp ()\ v(z )]E\g“)(”y)a% El) 0)
. . .
Spin-spin correlations: Coor = (glpr)y — ) {lpr), 1y = §5AB as&)af@)
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Correlations for coherent states ( large spins, j, > 1)

|. Probability distribution factorizes
over one-dimensional sublattices.

/
A/
//

/

5
Ay

//
v/
/

P)\ X He_%(je_%2)2 H He_ﬁ(jcﬂﬁ_ja)z ~—

links nodes a

VA
i
R

]
N
Il
A
]

2. Correlations within each sublattice:

CR) =Gjur = jgoe_z"m = Correlation length: £ =043

(in lattice units)

Similar result for heat kernel states |{H;},t), H;, € SL(2,C) [Thiemann CQGI8 (2001)]
[Bianchi et al PRD82 (2010)]

CR =~ — (1 +40)] F —  £<— ~ 144

(1 + 4tjo) log 2
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Correlations in the limit of small spins

Coherent states satisfy the following properties:

(i) Factorizable state

(i) Fast decay of amplitudes

Loop expansion dominated by
contributions from small loops.

C(R) oc \?6R

Short ranged correlations in the
limit of small spins.

[Bianchi, Guglielmon, Hackl, NY]

C<I>| Ld, — C<I>| C<I>2

co < ANPI® (with 8 = 2)
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Correlations for squeezed states

Squeezed state peaked at cubic geometry

AB
Choose: Vimu),(nv) = A ECDZC D o (Omn + € foon)
fixes scale factor e < | , encodes

areas peaked along

. o correlations
Euclidean directions

Average values of local observables fixed by A and z's. For small spins:

2 24

h=5  WM=55

7 ©0s2(& + §)]

For e = 0, the state is factorizable. Correlations are short ranged.
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Correlations for squeezed states

For nonzero ¢, we find for the spin-spin correlations:

26

Coor = 316

~ 2\ | 682 f 0s(e")

The function f can be chosen to scale with the inverse of the distance, yielding
an inverse square law for the correlations:

Corr o< 1/ (ds(oys(ery)?

+ The distance d does not refer to a background geometry. It is encoded in the state,
being determined by the diagonal part of the squeezing matrix.

+ Area law for the entanglement entropy. [Bianchi, Hackl, NY]
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Quantum shape matching

Twisted geometry: Fluctuations in shapes of nearby tetrahedra uncorrelated

Uniformly saturate the mutual information
for neighboring nodes:

|
Ias = = (Sa + Sz — Sas)

2
2
(©On0) ~ (OO0 (O8)* _ ., JADS @
2[|Onl[*[| O8]
Correlations in fluctuations of the geometry Twisted geometry

are enhanced for adjoining tetrahedra.

Resulting state is peaked at shape-matched configurations.

For dipole graph, EPR-like state with perfectly correlated geometry fluctuations.
[Baytas, Bianchi, NY]
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Conclusion

< Bosonic representation

Resolution of the identity in a new basis of loop states

Entanglement entropy defined in the extended bosonic space
+ Construction of squeezed spin network states

% Long range correlations on cubulations

Squeezed spin network states can be used to encode correlations that
reproduce vacuum fluctuations of massless fields in the continuum

Area law for the entanglement entropy

< Quantum shape matching
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