How to measure realistic Quantum Gravity observables:

Primordial Black Holes

Francesca Vidotto

Netherlands Organisation for Scientific Research

LOOPS17 Warsaw - July 6th, 2017

Radboud University Nijmegen

BH EXPLOSION

See talk by Singh

quantum region ~

"Planck Star"

Vidotto, Rovelli 1401.6562

Quantum Gravity Phenomenology

See talks by Cristodoulou, Haggard, Rovelli

 \mathbb{O} Whit tunnelling 0 \bigcirc \mathcal{T} \square

WHERE are quantum effects?

r > 2M r = 2M r = 0

WHEN are quantum effects?

r > 2M r = 2M r = 0

HOW LONG IS THE BOUNCE FROM OUTSIDE?

Upper limit:

Firewall argument (Almheiri, Marolf, Polchinski, Sully): "something" unusual must happen before the Page time (~ 1/2 evaporation time)

 \Rightarrow the hole lifetime must be shorter or of the order of ~ \mathbf{m}^3

Lower limit:

For something quantum to happens, semiclassical approximation must fail. Typically in quantum gravity: high curvature Curvature $\sim (L_P)^{-2}$ Small effects can pile up: small probability per time unit gives a probable effect on a long time! Typically in quantum tunneling:

 \Rightarrow the hole lifetime must be longer or of the order of $\sim m^2$

Vidotto, Rovelli 1401.6562

Curvature \times (time) \sim (L_P)⁻¹

Haggard, Rovelli 1407.0989

HOW LONG IS THE BOUNCE FROM OUTSIDE?

Upper limit:

Firewall argument (Almheiri, Marolf, Polchinski, Sully): "something" unusual must happen before the Page time (~ 1/2 evaporation time)

 \Rightarrow the hole lifetime must be shorter or of the order of ~ $\mathbf{m^3}$

Lower limit:

For something quantum to happens, semiclassical approximation must fail. Typically in quantum gravity: high curvature Curvature $\sim (L_P)^{-2}$ Small effects can pile up: small probability per time unit gives a probable effect on a long time! Typically in quantum tunneling:

 \Rightarrow the hole lifetime must be longer or of the order of $\sim m^2$

- Vidotto, Rovelli 1401.6562

Curvature × (time) ~ $(L_P)^{-1}$ $\frac{m}{m^3} T_b \sim 1$

Haggard, Rovelli 1407.0989

HOW LONG IS THE BOUNCE FROM OUTSIDE?

Upper limit:

Firewall argument (Almheiri, Marolf, Polchinski, Sully): "something" unusual must happen before the Page time (~ 1/2 evaporation time)

 \Rightarrow the hole lifetime must be shorter or of the order of ~ \mathbf{m}^3

Lower limit:

For something quantum to happens, semiclassical approximation must fail. Typically in quantum gravity: high curvature Curvature $\sim (L_P)^{-2}$ Small effects can pile up: small probability per time unit gives a probable effect on a long time! Typically in quantum tunneling:

 \Rightarrow the hole lifetime must be longer or of the order of $\sim m^2$

Vidotto, Rovelli 1401.6562

 $\frac{1}{m^2} \frac{\text{Curvature} \times (\text{time}) \sim (\text{Lp})^{-1}}{m^2}$

Haggard, Rovelli 1407.0989

UNIVERSALITY OF BLACK HOLE EXPLOSION

LARGE EXTRA DIMENSIONS

1st order topological phase transition from black string to black hole occurring because of the Gregory-Laflamme metrical instability

Large black holes localized on infinite Randall- Sundrum branes: period of rapid decay via Hawking radiation of CFT modes

Quantum effects shorten the lifetime of black holes!

Casadio and Harms 2000/01 Gubser 2002, Kol 2002 **Gregory and Laflamme 2002**

Emparana, Garcia-Bellido, Kaloper 2003

- (1971).
- ⁶ Bassi, P., Clark, G., and Rossi, B., Phys. Rev., 92, 441 (1953)
- ⁷ David, F. N., Biometrika, 34, 299 (1947).
- ⁸ Weekes, T. C., Nature phys. Sci., 223, 129 (1971).

Black hole explosions?

QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of spacetime outside the event horizon is very large compared to the Planck length $(G\hbar/c^3)^{1/2} \approx 10^{-33}$ cm, the length scale of which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects ma be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe $\approx 10^{17}$ which is very long compared to the Planck time $\approx 10^{-43}$

For $m \sim 10^{24} Kg$, $m^3 \sim 10^{50}$ Hubble times, while $m^2 \sim Hubble time$

• V	
	Beckenstein ⁶ suggested on thermodynamic grounds
<i>i)</i> .	some multiple of κ should be regarded as the temperatur
	a black hole. He did not, however, suggest that a black
	could emit particles as well as absorb them. For this rea
	Bardeen, Carter and I considered that the thermodynan
	similarity between κ and temperature was only an anal
	The present result seems to indicate, however, that t
	may be more to it than this. Of course this calcula
	ignores the back reaction of the particles on the metric.
u-	quantum fluctuations on the metric. These might alter
he	picture.
e-	Further details of this work will be published elsewl
to	The author is very grateful to G. W. Gibbons for discuss
on	and help.
be	S. W. HAWKIN
r-	Department of Applied Mathematics and Theoretical Physical
to	and
ay	Institute of Astronomy
ce	University of Cambridge
S	
s.	Received January 17, 1974.

PRIMORDIAL BLACK HOLES

PRIMORDIAL BLACK HOLES

- All black holes are subject to quantum effects.
- An explosion observed today, requires old black holes: primordial.

Quantum) PBH dark matter:

- It decreases with time.

Caution with constraints!

- Constraints from Hawking evaporation do not apply.
- PBH mass spectrum beyond simple monochromatic models.
- PBH should exists, but not necessarily constitute all DM.

Musco, Miller 1201.2379

• Today, black holes smaller than $m(t)|_{t=t_H}$ have already exploded.

(but for later accretion/merging)

Carr, Kohri, Sendouda, Yokoyama 0912.5297

QUANTUM PRIMORDIAL BLACK HOLES AS DARK MATTER

Structure formation

Preliminary result: Planck Stars compatible with constraints from early cosmology

First stars & Supermassive black holes

Primordial black holes inside first-generation stars can provide the seeds for supermassive black holes

Quantum Gravity Phenomenology

Barrau, Moulin, Bellomo, Bernal, Chluba, Cholis, Raccanelli, Verde, Vidotto WIP

Bambi, Freese, Vidotto WIP

EFFECTS IN THE LATE UNIVERSE

Raccanelli, Verde, Vidotto (to appear soon)

From galaxy-cluster surveys: Observed galaxy over-density Cosmic Magnification

Use of LATE UNIVERSE observations to MEASURE quantum-gravity parameters!

Bellomo, Bernal, Chluba, Cholis, Raccanelli, Verde, Vidotto WIP

EFFECTS IN THE LATE UNIVERSE

Raccanelli, Verde, Vidotto (to appear soon)

From galaxy-cluster surveys:

Observed galaxy over-density

Cosmic Magnification

Use of LATE UNIVERSE observations to MEASURE quantum-gravity parameters!

Quantum Gravity Phenomenology

Bellomo, Bernal, Chluba, Cholis, Raccanelli, Verde, Vidotto WIP

PLANCK STAR SIGNAL

EXPECTED SIGNALS

fast process (few milliseconds?)

- the source disappears with the burst
- very compact object: big flux $E = mc^2 \sim 1.7 \times 10^{47}$ erg

- LOW ENERGY: size of the source \approx wavelength $\lambda_{predicted} \gtrsim .2 \text{ cm}(?)$
- **HIGH ENERGY:** energy of the particle liberated $\approx Tev$

SYNCHROTRON EMISSION

GRAVITATIONAL WAVES

Barrau, Rovelli, Vidotto 1409.4031

• exploding today: $m = \sqrt{\frac{t_H}{4k}} \sim 1.2 \times 10^{23} \text{ kg}$ $R = \frac{2Gm}{c^2} \sim .02 \text{ cm}$

Kavic &al. 0801.4023

MAXIMAL DISTANCE

Low energy channel

better single-event detection

Barrau, Bolliet, Vidotto, Weimer 1507.1198

shorter lifetime — smaller wavelength

High energy channel

■ PBH: mass - temperature relation

different scaling

THE SMOKING GUN: DISTANCE/ENERGY RELATION

distant signals originated in younger and smaller sources

$M \sim M_H \sim t_{\odot}$

 $t \sim 0.3 g_*^{-\frac{1}{2}} T^{-2}$

THE SMOKING GUN: DISTANCE/ENERGY RELATION

distant signals originated in younger and smaller sources

$M \sim M_H \sim t_{\odot}$

Quantum Gravity Phenomenology

 $t \sim 0.3 g_*^{-\frac{1}{2}} T^{-2}$

THE SMOKING GUN: DISTANCE/ENERGY RELATION

$$\lambda_{obs}^{other} = (1+z)\lambda_{emitted}^{other} \longrightarrow \lambda_{obs} \sim -$$

for our signal: distance $\propto 1$ /wave length

taking into account the redshift the resulting function is very slowly varying

> ■ DISTANCE: dispersion relation? hosting galaxy? • flux?

OBSERVED SIGNALS

FAST RADIO BURSTS

Short

Observed width ~ milliseconds

■ No Long GRB associated No Afterglow

Punctual No repetition

Enormous flux density • Energy $\leq 10^{38}$ erg

Likely Extragalactic ■ Dispersion Measure: z≤0.5

 $\square 10^4 \text{ event/day}$ A pretty common object?

Circular polarization Intrinsic

Quantum Gravity Phenomenology

FAST RADIO BURSTS

 $\lambda \approx 20 \text{ cm}$

Short

Observed width ~ milliseconds

■ No Long GRB associated No Afterglow

Punctual

No repetition

Enormous flux density • Energy $\leq 10^{38}$ erg

Likely Extragalactic ■ Dispersion Measure: z≤0.5

 $\square 10^4 \text{ event/day}$ A pretty common object?

Circular polarization Intrinsic

Quantum Gravity Phenomenology

Barrau, Rovelli, Vidotto 1409.4

- size of the source $\approx \lambda_{predicted} \gtrsim .02 \text{ cm}$ synchrotron emission $\approx 20 \text{ cm}$ Kavic, Vidotto WIP fast process
- •Very short GRB? gravitational waves?
 - the source disappears with the burst
- \blacksquare very compact object $\rightarrow 10^{47}$ erg
 - peculiar distance/energy relation

Are they bouncing Black Holes?

L	N	3	1
		0	

LIST OF FAST RADIO BURSTS

name	date	RA	dec	DM	width
FRB 010724	2001/07/24	01h18'	-75°12′	375	4.6
FRB 010621	2001/06/21	l 8h52′	-08°29′	746	7.8
FRB 110220	2011/02/20	22h34'	-12°24′	944.38	5.6
FRB 110627	2011/06/27	21h03′	-44°44′	723.0	<1.4
FRB 110703	2011/07/03	23h30′	-02°52′	1103.6	<4.3
FRB 120127	2012/01/27	23h15′	-18°25′	553.3	< .
FRB 011025	2001/10/25	l9h07′	-40°37′	790	9.4
FRB 121002	2012/10/02	18h14'	-85°11′	1628.76	2.1;3.7
FRB 121002	2012/10/02	18h14'	-85°11'	1629.18	<0.3
FRB 121102	2012/11/02	05h32′	33°05'	557	3.0
	2015	05h32′~	33°05'~	557~	
FRB 131104	2013/11/04	06h44′	-51°17′	779.0	<0.64
FRB 140514	2014/05/14	22h34'	-12°18′	562.7	2.8
FRB 090625	2009/06/25	03h07'	-29°55′	899.6	<1.9
FRB 130626	2013/06/26	l 6h27'	-07°27'	952.4	<0.12
FRB 130628	2013/06/28	09h03'	+03°26'	469.88	<0.05
FRB 130729	2013/07/29	13h41'	-05°59'	861	<4
FRB 110523	2011/05/23	21h45'	-00°12'	623.30	I.73
FRB 150418	2015/04/18	07h16'	-19° 00′	776.2	0.8
FRB 160317	2016/03/17	07:53:47	-29:36:3 I	65(±)	21
FRB 160410	2016/04/10	08:41:25	+06:05:05	278(±3)	4
FRB 160608	2016/06/08	07:36:42	-40:47:52	682(±7)	9
FRB 170107	2017/01/07	11:23	-05:01	609.5(±0.5)	2.6

Quantum Gravity Phenomenology

peak	notes
30	"Lorimer Burst"
0.4	
1.3	
0.4	
0.5	
0.5	
0.3	
0.35	double pulse 5.1 ms apart
>2.3	
0.4	by Arecibo radio telescope
	10 repeat bursts: 6 bursts in 10 minutes, 3 bursts weeks apart.
1.12	'near' Carina Dwarf Spheroidal Galaxy
0.47	21 \pm 7 per cent (3 σ) circular polarization
>2.2	
>1.5	
>1.2	
>3.5	
0.6	700-900 MHz at Green Bank telescope, detection circular and linear polarization.
2.4	Detection of linear polarization. The origin of the burst is disputed.
>3.0	UTMOST, Decl \pm 1.5°
>7.0	UTMOST, Decl \pm 1.5°
>4.3	UTMOST, Decl ± 1.5°
27±4	first by ASKAP, high fluence ~58 Jy ms. In Leo. Galactic latitude 51°, Distance 3.1 Gpc, isotropic energy ~3 × 1034 J

Home » Latest News » Posts » SKA pathfinder telescope detects 3 new fast radio bursts

SKA Pathfinder Telescope Detects 3 New Fast Radio Bursts

The three new fast radio bursts detected with the Molonglo telescope – an SKA pathfinder telescope – came from the direction of the constellations Puppis and Hydra. Credit: James Josephides/Mike Dalley

Canberra, Australia, Thursday 13 April - The Molonglo telescope - an SKA pathfinder telescope located some 40km from the Australian capital Canberra - has been used to detect 3 new fast radio bursts (FRBs), it was announced last week.

Fast Radio Bursts are millisecond-duration intense pulses of radio light that appear to be coming from vast distances. They are about a billion times more luminous than anything we have ever seen in our own Milky Way galaxy and have so far eluded any explanation.

Ms Manisha Caleb, currently undertaking her PhD at the Australian National University, Swinburne University of Technology and CAASTRO, developed software to sift through the 1 PB of data produced each day by the telescope, and in the process discovered these three FRBs.

"Until now we only knew of 18 FRBs, so every new detection is key to cracking the mystery of what causes them." said Manisha. "It's fantastic to be able to use such a telescope and contribute to the research on these unknown phenomena as a PhD student. With this experience, I'm hopeful that I'll be able to contribute to the SKA in the future!"

SKA Project Scientist Evan Keane added: "It's great to see the upgraded Molonglo breaking new ground in the

Print this page

Latest News

28th April 2017 Construction begins on headquarters for the world's largest radio telescope

13th April 2017 SKA pathfinder telescope detects 3 new fast radio bursts

th April 2017 Outcomes of the 23rd SKA Board Meeting

DETECTION ON EARTH?

Quantum Gravity Phenomenology

INTEGRATED EMISSION

INTEGRATED EMISSION

 $au \sim m^2$

Low energy channel

Quantum Gravity Phenomenology

Barrau, Bolliet, Vidotto, Weimer 1507.1198

direct $6. \times 10^{-12}$ decayed 10^{-15} $5. \times 10^{-12}$ _____ - E [eV] E [eV]

High energy channel

PBH MASS SPECTRUM

$$n(R) = \int_{M(t)}^{M(t+\Delta t)} \frac{dn}{dMdV} dM \qquad n(R)$$

Low energy channel

$$(R) \approx \frac{dn}{dMdV} \frac{\Delta t}{8k}$$

$$\frac{dn}{dMdV} = \alpha M^{-1 - \frac{1+3w}{1+w}}$$

Different mass spectra gives qualitatively same diffuse emission...

GeV FERMI EXCESS

Low energy channel	¹⁰⁻³
Consider the longest possible lifetime of a quantum black hole.	10-4
	$\epsilon^2 dN/d\epsilon$
Number of secondary gamma-rays is higher than the number of primary gamma-rays, but their spectral energy density is much lower.	10 ⁻⁶

Schutten, Barrau, Bolliet, Vidotto 1606.08031

... THE BEST ISYET TO COME!

DETECTION ON EARTH?

Quantum Gravity Phenomenology

Quantum Gravity Phenomenology

Quantum Gravity Phenomenology

- at the same temperature as the

TO CONCLUDE

13400

Quantum Gravity Phenomenology

andread

5-2-21

the state of the s

1.1

Residence and the lot

51.5

ter det ter veri

SUMMARY

PHENOMENOLOGY depends mainly on the lifetime 1. given as a function of the mass: as short as m^2

2. **NEW EXPERIMENTAL WINDOWS** for quantum gravity

- signals in the sub-mm, radio & TeV
- direct detection & diffuse emission
- peculiar energy distance relation

3. PRIMORDIAL BLACK HOLES

- new features
- consequence in the early universe
- but also in the late one !!!

* interesting to check prediction by different QG frameworks!

PLANCK STARS: REFERENCES ON PHENOMENOLOGY

- Planck stars Carlo Rovelli, Francesca Vidotto Int. J. Mod. Phys. D23 (2014) 12, 1442026
- Planck star phenomenology Aurelien Barrau, Carlo Rovelli Phys. Lett. B739 (2014) 405
- Fast Radio Bursts and White Hole Signals Aurélien Barrau, Carlo Rovelli, Francesca Vidotto Phys. Rev. D90 (2014) 12, 127503
- Quantum Gravity Effects around Sagittarius A* Hal Haggard, Carlo Rovelli Phys. Rev. D90 (2014) 12, 127503
- Phenomenology of bouncing black holes in quantum gravity: a closer look Aurélien Barrau, Boris Bolliet, Francesca Vidotto, Celine Weimer JCAP 1602 (2016) no.02, 022
- Bouncing black holes in quantum gravity and the Fermi gamma-ray excess Aurélien Barrau, Boris Bolliet, Marrit Schutten, FrancescaVidotto Phys. Lett. B 722 (2017) 58-62,
- Quantum effects of Primordial Black Holes on Galaxy Clustering Alvise Raccanelli, Licia Verde, Francesca Vidotto to appear soon

Planck stars as observational probes of Carlo Rovelli quantum gravity Nature Astronomy, March'17, comment

Aurélien Barrau	Nicola Bellomo
Borris Bolliet	José Louis Bernal
Marios Christodoulou	Jens Chluba
Fabio D'Ambrosio	Ilya Cholis
Tommaso Di Lorenzo	Michael Kavic
Hal Haggard	Flora Moulin
Simone Speziale	Alvise Raccanelli
Marrit Schutten	Licia Verde
Alejandro Perez	
Carlo Rovelli	
Ilya Vilensky	

Aurélien Barrau	Nicola Bellomo
Borris Bolliet	José Louis Bernal
Marios Christodoulou	Jens Chluba
Fabio D'Ambrosio	Ilya Cholis
Tommaso Di Lorenzo	Michael Kavic
Hal Haggard	Flora Moulin
Simone Speziale	Alvise Raccanelli
Marrit Schutten	Licia Verde
Alejandro Perez	
Carlo Rovelli	
Ilya Vilensky	

Aurélien Barrau	Nicola Bellomo
Borris Bolliet	José Louis Bernal
Marios Christodoulou	Jens Chluba
Fabio D'Ambrosio	Ilya Cholis
Tommaso Di Lorenzo	Michael Kavic
Hal Haggard	Flora Moulin
Simone Speziale	Alvise Raccanelli
Marrit Schutten	Licia Verde
Alejandro Perez	
Carlo Rovelli	
Ilya Vilensky	

Aurélien Barrau	Nicola Bellomo
Borris Bolliet	José Louis Bernal
Marios Christodoulou	Jens Chluba
Fabio D'Ambrosio	Ilya Cholis
Tommaso Di Lorenzo	Michael Kavic
Hal Haggard	Flora Moulin
Simone Speziale	Alvise Raccanelli
Marrit Schutten	Licia Verde
Alejandro Perez	
Carlo Rovelli	
Ilya Vilensky	

PLANCK STARS: REFERENCES ON PHENOMENOLOGY

- Planck stars Carlo Rovelli, Francesca Vidotto Int. J. Mod. Phys. D23 (2014) 12, 1442026
- Planck star phenomenology Aurelien Barrau, Carlo Rovelli Phys. Lett. B739 (2014) 405
- Fast Radio Bursts and White Hole Signals Aurélien Barrau, Carlo Rovelli, Francesca Vidotto Phys. Rev. D90 (2014) 12, 127503
- Quantum Gravity Effects around Sagittarius A* Hal Haggard, Carlo Rovelli Phys. Rev. D90 (2014) 12, 127503
- Phenomenology of bouncing black holes in quantum gravity: a closer look Aurélien Barrau, Boris Bolliet, Francesca Vidotto, Celine Weimer JCAP 1602 (2016) no.02, 022
- Bouncing black holes in quantum gravity and the Fermi gamma-ray excess Aurélien Barrau, Boris Bolliet, Marrit Schutten, FrancescaVidotto Phys. Lett. B 722 (2017) 58-62,
- Quantum effects of Primordial Black Holes on Galaxy Clustering Alvise Raccanelli, Licia Verde, Francesca Vidotto to appear soon

Planck stars as observational probes of Carlo Rovelli quantum gravity Nature Astronomy, March'17, comment

