Asymptotics of the EPRL model with timelike tetrahedra

Marcin Kisielowski

Instytut Fizyki Teoretycznej, Uniwersytet Warszawski

Loops'17, Warszawa, 07.07.2017

Based on joint work with Wojciech Kamiński and Hanno Sahlmann, arXiv:1705.02862 [gr-qc]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Section 1

Introduction

Marcin Kisielowski Asymptotics of the EPRL model with timelike tetrahedra

イロト イヨト イヨト イヨト

Ponzano-Regge spin-foam model

Let M be a triangulated compact 3-manifold. To each edge of the triangulation we assign a non-negative half-integer or integer j. A spin-foam amplitude in the Ponzano-Regge model is

$$Z_{\text{PR}} = \prod_{\text{interior edges}} (-1)^{2j} (2j+1) \prod_{\text{interior triangles}} (-1)^{j_1+j_2+j_3} \prod_{\text{tetrahedra}} \left\{ \begin{array}{cc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array} \right\}$$

Ponzano and Regge noticed that in the limit of large spins

$$\left\{\begin{array}{ccc} j_1 & j_2 & j_3\\ j_4 & j_5 & j_6\end{array}\right\} \sim \sqrt{\frac{2}{3\pi V}}\cos(S_{\rm Regge}+\frac{\pi}{4})$$

where $S_{\text{Regge}} = \sum_{e} \ell_{e} \vartheta_{e}, \ell_{e} = j_{e} + \frac{1}{2}$.

Vertex amplitude for 4D Lorentzian Gravity

• The generalizations of the 6j-symbol for 4D Lorentzian Gravity have been proposed [Barrett, Crane '00; Engle, Pereira, Rovelli, Livine '07; Friedel, Krasnov '07].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vertex amplitude for 4D Lorentzian Gravity

- The generalizations of the 6j-symbol for 4D Lorentzian Gravity have been proposed [Barrett, Crane '00; Engle, Pereira, Rovelli, Livine '07; Friedel, Krasnov '07].
- It has been shown that in the limit of large spins the EPRL vertex amplitude relates to the Regge action of 4D Gravity in similar way as 6j-symbol relates to the Regge action of 3D Euclidean Gravity [Barrett, Dowdall, Fairbairn, Henrique Gomes, Frank Hellmann '09; Barrett, R J Dowdall, Winston J Fairbairn, Frank Hellmann and Roberto Pereira '09]

Vertex amplitude for 4D Lorentzian Gravity

- The generalizations of the 6j-symbol for 4D Lorentzian Gravity have been proposed [Barrett, Crane '00; Engle, Pereira, Rovelli, Livine '07; Friedel, Krasnov '07].
- It has been shown that in the limit of large spins the EPRL vertex amplitude relates to the Regge action of 4D Gravity in similar way as 6j-symbol relates to the Regge action of 3D Euclidean Gravity [Barrett, Dowdall, Fairbairn, Henrique Gomes, Frank Hellmann '09; Barrett, R J Dowdall, Winston J Fairbairn, Frank Hellmann and Roberto Pereira '09]
- In its original formulation the EPRL model applies to tetrahedra with time-like normals. It has been later extended include tetrahedra with space-like normals [Conrady, Hnybida '10]

Outline

Classical 4-simplex

Quantum 4-simplex

4 Large spin limit

Summary and outlook

크

Section 2

Classical 4-simplex

Marcin Kisielowski Asymptotics of the EPRL model with timelike tetrahedra

イロト イヨト イヨト イヨト

4-simplex

4-simplex

A 4-simplex is a convex hall of 5 different points $x_0, x_1, x_2, x_3, x_4 \in \mathbb{R}^4$. We can a triangle by the 2 points which are not contained the triangle. To each ordered pair (*ij*) there correspons a bivector B_{ij}^{Δ} , for example:

$$B_{12}^{\Delta} = (x_3 - x_0) \wedge (x_4 - x_0).$$

The bivectors have the following properties:

$$B_{ij}^{\Delta} = -B_{ji}^{\Delta},$$

 $orall_i \sum_{j \neq i} B_{ij}^{\Delta} = 0.$

Geometry of a 4-simplex

Metric

The space \mathbb{R}^4 can be equipped with a flat metric $g_{\mu\nu}$. The relevant signatures will be (+---), (----), (++--).

The area of the triangles

The area of a (space-like) triangle is given by

$$A_{ij}^{\Delta}=\frac{1}{2}|B_{ij}^{\Delta}|.$$

Outward pointing normal to a tetrahedron

We consider outward pointing vector N_i^{Δ} normal to the tetrahedron *i*,

$$\forall_{j\neq i} B_{ij}^{\Delta} \exists N_i^{\Delta} = 0, \quad N_i^{\Delta} : N_i^{\Delta} = \underline{t}_i = \pm 1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Classical 4-simplex Quantum 4-simplex

Dihedral angle in Euclidean (---) or split signature (++--)

<u>Dihedral angle in Euclidean (---) or split signature (++--)</u>

The dihedral angle is a unique angle θ_{ii} such that

$$\cos \theta_{ij} = t^{can'} N_i^{\Delta} \cdot' N_j^{\Delta}, \quad t^{can'} \theta_{ij} \in (0, \pi)$$

Dihedral angles in Lorentzian signature (+ - - -

• If $N_i^{\Delta} \cdot N_j^{\Delta} > 0$ and $N_i^{can} = N_j^{can}$, then the dihedral angle $\theta_{ij} > 0$ is the unique angle such that

$$N_i^{\Delta} \cdot N_j^{\Delta} = \cosh \theta_{ij}$$

• If $N_i^{\Delta} \cdot N_j^{\Delta} < 0$ and $N_i^{can} = N_j^{can}$, then the dihedral angle $\theta_{ij} < 0$ is the unique angle such that

$$N_i^{\Delta} \cdot N_j^{\Delta} = -\cosh \theta_{ij}.$$

• If $N_i^{can} \neq N_j^{can}$, then the dihedral angle θ_{ij} is the unique angle such that

$$N_i^{\Delta} \cdot N_j^{\Delta} = \sinh \theta_{ij}.$$

Regge action

By Ag2gaeh - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45038421

The contribution to the Regge action from a 4-simplex Δ

$$S_{\Delta} = \sum_{i < j} A^{\Delta}_{ij} heta_{ij}.$$

Section 3

Quantum 4-simplex

イロト イヨト イヨト イヨト

Quantum tetrahedron in 3D: signature (+, +, +)

The Livine-Speziale coherent intertwiner

$$\iota^{\mathrm{LS}} = \int_{\mathrm{SU}(2)} du \ D_{\jmath_1}(u) \left| \jmath_1 \vec{n}_1 \right\rangle \otimes D_{\jmath_2}(u) \left| \jmath_2 \vec{n}_2 \right\rangle \otimes D_{\jmath_3}(u) \left| \jmath_3 \vec{n}_3 \right\rangle \otimes D_{\jmath_4}(u) \left| \jmath_4 \vec{n}_4 \right\rangle,$$

where $|j\vec{n}\rangle = D_j(u_{\vec{n}})|_{jj}\rangle$, $n^i\sigma_i = u_{\vec{n}}\sigma_3 u_{\vec{n}}^{-1}$. It is an element of a Hilbert space $\mathcal{H} = \text{Inv}(\mathcal{H}_{j_1} \otimes \ldots \otimes \mathcal{H}_{j_4})$. This space is in fact spanned by Livine-Speziale coherent intertwiners satisfying:

$$j_1\vec{n}_1+\ldots+j_4\vec{n}_4=0.$$

Such intertwiners can be interpreted as quantum tetrahedra in 3D.

The Y-map

The unitary irreducible representations of $SL(2, \mathbb{C})$ in the principal series are labelled with a half-integer j and a positive real number ρ . The representation space $\mathcal{H}_{(j,\rho)}$ decomposes into representations of the SU(2) subgroup:

$$\mathcal{H}_{(j,\rho)} = \bigoplus_{k=j}^{\infty} \mathcal{H}_k.$$

The Y-map is the isometric embedding $Y_{j,\rho} : \mathcal{H}_j \to \mathcal{H}_{(j,\rho)}$ into the lowest spin representation space in this decomposition.

Quantum tetrahedron in 4D

Quantum tetrahedron in 4D with the standard time-like normal

A quantum tetrahedron in 4D with standard normal $N^{can} = (1, 0, 0, 0)^T$ is obtained by embedding the tetrahedron in 3D into 4D:

$$Y_{j_1,\rho_1}\otimes\ldots\otimes Y_{j_4,\rho_4}(\iota^{\mathrm{LS}}),$$

where ρ_i and j_i satisfy a constraint:

$$\rho_i = 2\gamma j_i.$$

Quantum tetrahedron in 4D with any time-like normal

A quantum tetrahedron in 4D with normal $N = g N^{\text{can}}$, where $g \in \text{SL}(2,\mathbb{C})$, is obtained by acting with the group element g on the coherent intertwiner:

$$D_{j_1,2\gamma j_1}(g) \otimes \ldots \otimes D_{j_4,2\gamma j_{l_4}}(g) Y_{j_{l_1},2\gamma j_1} \otimes \ldots \otimes Y_{j_4,2\gamma j_4}(\iota_n^{\mathrm{LS}}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quantum tetrahedron in 3D: signature (+--)

$SU(2) = \{ u \in SL(2, \mathbb{C}) : u\sigma_0 u^{\dagger} = \sigma_0 \}$	$\mathrm{SU}(1,1) = \{ u \in \mathrm{SL}(2,\mathbb{C}) : u\sigma_3 u^{\dagger} = \sigma_3 \}$
$su(2) = span < i\sigma_1, i\sigma_2, i\sigma_3 >$	$su(1,1) = span < i\tau_0, i\tau_1, i\tau_2 >, \tau_0 =$
	$\sigma_3, \tau_1 = -i\sigma_2, \tau_2 = i\sigma_1$
$D_j(u): \mathcal{H}_{\mathcal{I}} ightarrow \mathcal{H}_{\mathcal{I}}$	$\left \begin{array}{c} D_{j}^{+}(u):\mathcal{H}_{j}^{+}\rightarrow\mathcal{H}_{j}^{+}, \ D_{j}^{-}(u):\mathcal{H}_{j}^{-}\rightarrow\mathcal{H}_{j}^{-} \end{array} \right.$
jm>	$ \jmath m\rangle_+, m \in \{\jmath, \jmath + 1, \ldots\},$
	$ \jmath m\rangle_{-}, m \in \{\ldots, -\jmath - 1, -\jmath\}$
$J_i = i D'_{\mathcal{I}}(i\sigma_i)$	$J_a^{\pm} = \mathrm{i} D'_{j}^{\pm} (\mathrm{i} \tau_a)$
$(J_1)^2 + (J_2)^2 + (J_3)^2 jm\rangle =$	$(J_0^{\pm})^2 - (J_1^{\pm})^2 - (J_2^{\pm})^2 \jmath m\rangle_{\pm} =$
$j(j+1) jm\rangle$	$j(j-1) jm\rangle_{\pm}$
$J_{3} \ket{\jmath m} = m \ket{\jmath m}$	$\left J_{0}^{\pm} \left \jmath m \right\rangle_{\pm} = m \left \jmath m \right\rangle_{\pm}$
$ \jmath\vec{n}\rangle = D_j(u_{\vec{n}}) \jmath\jmath\rangle, n^i\sigma_i = u_{\vec{n}}\sigma_3 u_{\vec{n}}^{-1}$	$ig \jmath ec n_+ ig angle_+ := D^+_i(g_{ec n}) ig \jmath \jmath angle_+ ,$
	$\left \left \jmath ec{n}_{-} ight angle_{-} ight := ec{D}_{\jmath}^{-}(oldsymbol{g}_{ec{n}}) \left \jmath - \jmath ight angle_{-},$
	$n^{a}\tau_{a} = g_{\vec{n}}\tau_{0}g_{\vec{n}}^{-1}, \vec{n}_{+} = \vec{n}, \vec{n}_{-} = -\vec{n}$
<i>n</i> normalized	\vec{n}_+ normalized, timelike, future-pointing
	\vec{n}_{-} normalized, timelike, past-pointing

<ロ> <問> <問> < 同> < 同> 、

æ

Quantum tetrahedron in 3D: signature (+--)

イロン イ団 とくほ とくほ とう

The Y-map

The representation space $\mathcal{H}_{(\jmath,\rho)}$ decomposes into representations of the SU(1,1) subgroup:

$$\mathcal{H}_{(j,\rho)} = \left(\bigoplus_{k>\frac{1}{2}}^{j} \mathcal{H}_{k}^{+} \oplus \int_{[0,\infty]}^{\oplus} ds \, \mathcal{H}_{s}^{\epsilon} \right) \oplus \left(\bigoplus_{k>\frac{1}{2}}^{j} \mathcal{H}_{k}^{-} \oplus \int_{[0,\infty]}^{\oplus} ds \, \mathcal{H}_{s}^{\epsilon} \right).$$

The Y-map is the isometric embedding $Y_{j,\rho}^{\pm} : \mathcal{H}_{j}^{\pm} \to \mathcal{H}_{(j,\rho)}$ into the highest spin representation space \mathcal{H}_{k}^{\pm} in this decomposition.

Quantum tetrahedron in 4D with standard space-like normal

Quantum tetrahedron in 4D with standard space-like normal

A quantum tetrahedron in 4D with standard normal $N_{can} = (0, 0, 0, 1)^T$ is obtained by embedding the tetrahedron in 3D into 4D:

$$Y^{ullet}_{j_1,\rho_1}\otimes\ldots\otimes Y^{ullet}_{j_4,\rho_4}(\iota^{\mathrm{LS}}),$$

where ρ_i and j_i satisfy a constraint:

$$\rho_i = 2\gamma j_i.$$

Quantum tetrahedron in 4D

A quantum tetrahedron in 4D with normal $N = gN_{can}$, where $g \in SL(2,\mathbb{C})$, is obtained by acting with the group element g on the coherent intertwiner:

$$D^{ullet}_{\jmath_1,2\gamma\jmath_1}(g)\otimes\ldots\otimes D^{ullet}_{\jmath_4,2\gamma\jmath_4}(g)\;Y^{ullet}_{\jmath_1,2\gamma\jmath_1}\otimes\ldots\otimes Y^{ullet}_{\jmath_4,2\gamma\jmath_4}(\iota^{\mathrm{LS}}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The vertex amplitude

The vertex amplitude

The vertex amplitude is given by an integral:

$$\mathcal{A}_{m{v}} = \int \prod_i dg_i \, du_i \prod_{i < j} eta(g_i \widetilde{\Psi}_{ij}, g_j \widetilde{\Psi}_{ji}),$$

where β is the bilinear SL(2, \mathbb{C})-invariant form,

$$\widetilde{\Psi}_{ij} = Y^{\circ}_{j_{ij},2\gamma j_{ij}} D^{\circ}_{j_{ij}}(u_i) \left| j_{ij} \vec{n}_{ij} \right\rangle_{\circ}$$

and

$$g_i \widetilde{\Psi}_{ij} = D_{j_{ij}, 2\gamma j_{ij}}(g_i) \widetilde{\Psi}_{ij}$$

The vertex amplitude

The vertex amplitude

The integrals over SU(2) or SU(1,1) group can (and should) be dropped:

$$oldsymbol{\mathcal{A}}_{oldsymbol{
u}} = \int \prod_i dg_i \, du_i \prod_{i < j} eta(g_i \widetilde{\Psi}_{ij}, g_j \widetilde{\Psi}_{ji}),$$

where β is the bilinear SL(2, \mathbb{C})-invariant form,

$$\widetilde{\Psi}_{ij} = Y^{\circ}_{\jmath_{ij},2\gamma\jmath_{ij}} D^{\circ}_{\jmath_{ij}}(u_i) \left| \jmath_{ij} \vec{n}_{ij} \right\rangle_{\circ}$$

and

$$g_i \widetilde{\Psi}_{ij} = D_{j_{ij}, 2\gamma j_{ij}}(g_i) \widetilde{\Psi}_{ij}.$$

The vertex amplitude

The vertex amplitude

The integrals over SU(2) or SU(1,1) group can (and should) be dropped:

$$A_{V} = \int \prod_{i} dg_{i} \prod_{i < j} eta(g_{i} \Psi_{ij}, g_{j} \Psi_{ji}),$$

where β is the bilinear SL(2, \mathbb{C})-invariant form,

$$\Psi_{ij} = Y^{\circ}_{\jmath_{ij},2\gamma\jmath_{ij}} \left| \jmath_{ij} \vec{n}_{ij} \right\rangle_{\circ}$$

and

$$g_i \Psi_{ij} = D_{j_{ij}, 2\gamma j_{ij}}(g_i) \Psi_{ij}$$

The vertex amplitude

The vertex amplitude

One of the integrals over $SL(2, \mathbb{C})$ should also be dropped:

$$\mathcal{A}_{m{
u}} = \int \prod_i dm{g}_i \, \prod_{i < j} eta(m{g}_i \Psi_{ij}, m{g}_j \Psi_{ji}),$$

where β is the bilinear SL(2, \mathbb{C})-invariant form,

$$\Psi_{ij} = Y^{\circ}_{\jmath_{ij},2\gamma\jmath_{ij}} \left| \jmath_{ij} \vec{n}_{ij} \right\rangle_{\circ}$$

and

$$g_i \Psi_{ij} = D_{j_{ij}, 2\gamma j_{ij}}(g_i) \Psi_{ij}$$

The vertex amplitude

The vertex amplitude

The vertex amplitude is:

$$m{A}_{m{V}}=\int\prod_{i}dg_{i}\delta(g_{5})\prod_{i< j}m{eta}(g_{i}\Psi_{ij},g_{j}\Psi_{ji}),$$

where β is the bilinear SL(2, \mathbb{C})-invariant form,

$$\Psi_{ij} = Y^{\circ}_{\jmath_{ij},2\gamma\jmath_{ij}} \left| \jmath_{ij}\vec{n}_{ij} \right\rangle_{\circ}$$

and

$$g_i \Psi_{ij} = D_{j_{ij}, 2\gamma j_{ij}}(g_i) \Psi_{ij}$$

Section 4

Large spin limit

イロト イヨト イヨト イヨト

Extended stationary phase

Vertex amplitude as a path integral

$$\mathcal{A}_{V}^{\Lambda} = \int \prod_{i} dg_{i} \delta(g_{5}) \prod_{i < j} eta(g_{i} \Psi_{ij}^{\Lambda}, g_{j} \Psi_{ji}^{\Lambda}) = \int \prod_{i} dg_{i} \delta(g_{5}) e^{\Lambda S(g)},$$

where $S(g) = \sum_{i < j} S_{ij}(g), S_{ij}(g) = \ln(\beta(g_i \Psi_{ij}, g_j \Psi_{ji}))$

Extended stationary phase

The key role is played by *critical points* $g_0: \delta S(g_0) = 0$, $\Re S(g_0) = 0$. If *S* has no critical points, the amplitude is exponentially supressed. Each critical point g_0 contributes to the asymptotic formula with an oscilatory term with phase $\Lambda S(g_0)$.

< ロ > < 同 > < 三 > < 三 > -

Introduction Classical 4-simplex Quantum 4-simplex Large spin limit

Boundary data

Boundary data

The geometric boundary data are sets of vectors

$$_{j} \perp N_{j}^{can}$$
 (1)

< □ > < 同 > < 回 > < 回 > .

Vi that coincide with $\vec{v}_{ij} := \rho_{ij} \vec{n}_{ij}$ when restricted to the space orthogonal to N_i^{can} .

Non-degeneracy

We will say that the boundary data is non-degenerate if for every i 3 out of 4 vectors v_{ii} are linearly independent.

The critical points

Critical points

The SO(1,3) geometric solution is a collection

$$\{G_i \in SO(1,3)\}_{i=0,...4}$$

such that bivectors

$$B_{ij} = *(v_{ij} \wedge N_i^{can}), \quad B_{ij}^{\{G\}} = G_i B_{ij}, \quad i \neq j,$$

with v_{ij} defined by the boundary data satisfy

$$\forall_{i \neq j} B_{ij}^{\{G\}} = -B_{ji}^{\{G\}} ,$$
$$\forall_i \sum_{j \neq i} B_{ij} = 0.$$

Gauge symmetries

Inversion

The inversion $I \in SO(1,3)$ is defined by

$$\forall_{\mathbf{v}} \mathbf{I} \mathbf{v} = -\mathbf{v}$$

It does not belong to $SO_+(1,3)$.

Gauge symmetries

Two geometric solutions $\{G_i\}$, $\{G'_i\}$ are gauge equivalent if there exists $G \in SO(1,3)$ and $s_i \in \{0,1\}$ such that

$$\forall_i \quad G'_i = GG_i I^{s_i}$$

These gauge transformations are called inversion gauge transformation.

Gram matrix

Lemma 18. :)

If boundary data is non-degenerate then for every *i* there exists a unique up translations tetrahedron with outward pointing normals \vec{v}_{ij} .

Length matching

The edge lengths are determined uniquely as functions of \vec{v}_{ij} . Let us denote the signed square lengths of the edge

 l_{ik}^{i2} between faces (*ij*) and (*ik*) of the tetrahedron *i*.

This numbers are defined for *i*, *j*, *k* pairwise different and are symmetric in *j*, *k*. The geometric boundary data satisfies lengths matching condition if $I_{ij}^{k\,2}$ is symmetric in all its indices.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gram matrix

Definition (Signed square lengths)

If lengths matching condition is satisfied we define signed square lengths

$$l_{ml}^2 = l_{ij}^{k 2}$$
, for *m*, *l* the remaining missing indices different from *i*, *j*, *k*

These lengths determines 4 simplex unique up to orthogonal transformation and shifts.

Definition (Gram matrix)

Gram matrix of the 4 simplex

$$G' = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & l_{01}^2 & \cdots & l_{04}^2 \\ 1 & l_{10}^2 & 0 & \cdots & l_{14}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & l_{40}^2 & l_{41}^2 & \cdots & 0 \end{pmatrix}$$

4-simplex corresponding to a Gram matrix

Theorem

Let us denote the signature of G^l by $(\underbrace{p+1},\underbrace{q+1},\underbrace{n})$.

- If n = 0 then there exists a unique up to O(p, q) ⋊ ℝ⁴ transformations non-degenerate 4 simplex in the spacetime with metric g_{µν} of signature (p, q) with these lengths. There are two inequivalent 4-simplices up to SO(p, q) ⋊ ℝ⁴ transformations
- If n > 0 then there exists a unique up to O(p, q) ⋊ ℝ^{p+q} transformations degenerate 4 simplex in the signature (p, q) with these lengths.

Orientation matching

Orientation matching

Use the canonical embedding $N_{i}^{can\perp} \rightarrow \mathbb{R}^4$ to map the tetrahedron reconstructed from the outward pointing normals \vec{v}_{ij} into \mathbb{R}^4 . Consider affine isometries φ_i of $(\mathbb{R}^4, g_{\mu\nu})$ that map the reconstructed tetrahedron into the corresponding tetrahedron in a 4-simplex reconstructed from the Gram matrix. Denote by

$$G_i^{\Delta} := D\varphi_i.$$

We say that the boundary data satisfies orientation matching condition if for any reconstructed 4-simplex

$$\forall_i \det G_i^{\Delta} = r = (-1)^s.$$

The sign $r = (-1)^s$ will be called the Plebański orientation.

Classification of critical points

If there are no critical points, then the vertex amplitude with the boundary data is suppressed. If there is precisely 1 critical point, then the asymptotic behaviour is governed by a single oscilatory contribution $\Lambda \phi + O(\Lambda)$ with the phase depending on the choice of phases of the coherent states.

2 critical points: signature (+ -

Definition (Reflections)

We can introduce reflections with respect to the normalized (to ± 1 vector N)

$$(R_N)^{\mu}_{\nu} = \mathbb{I}^{\mu}_{\nu} - rac{2N^{\mu} N_{\nu}}{N \cdot N} \in O = O(p,q)$$

where we lowered index with use of the metric.

Critical points

If the reconstructed 4-simplex Δ is Lorentzian then the (gauge equivalence classes of the) two distinct critical points $\{G_i\}$ and $\{\tilde{G}_i\}$ are:

$$G_i = G_i^{\Delta} (R_{N_i^{can}})^s, \quad \tilde{G}_i = R_{e_{\alpha}} G_i R_{N_i^{can}}$$
(2)

where *s* is determined by $\forall_i \det G_i^{\Delta} = (-1)^s$, e_{α} is any normalized to ± 1 vector.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 critical points: signature (+

Asymptotics of the vertex amplitude

There exists ϕ (depending on the choice of phases of coherent states) and geometric factors $\mathcal{N}^{\pm}_{\Lambda}$ (given by lengths and orientations of Δ) such that

$$A_{\Lambda} pprox e^{i\Lambda\phi}\Lambda^{-12} \left(\mathcal{N}_{\Delta}^{+}e^{i\Lambda S_{\Delta}} + \mathcal{N}_{\Delta}^{-}e^{-i\Lambda S_{\Delta}}
ight)$$

where S_{Δ} is a Regge (discrete Einstein) action without cosmological constant for the flat 4-simplex Δ .

< ロ > < 同 > < 三 > < 三 > -

2 critical points: signature (---) or (++--)

Critical points

Let us introduce auxiliary space $M^{4'}$ that differs from Minkowski space M^4 by flipping the norm of N^{can}

$$g_{\mu
u}'=g_{\mu
u}-2rac{N_{\mu}^{can}N_{
u}^{can}}{N^{can}\cdot N^{can}}$$

where we used $g_{\mu\nu}$ for lowering indices. Let $V = (N^{can})^{\perp}$. The following exact sequence holds

$$0 \to \{1, I\} \to SO(M^{4'}) \xrightarrow{\Phi} SO(V) \times SO(V) \to Z_2$$

where $\Phi(G) = (\Phi^+(G), \Phi^-(G))$.

If the reconstructed 4-simplex Δ is Euclidean or of split signature then the (gauge equivalence classes of the) two distinct critical points $\{G_i\}$ and $\{\tilde{G}_i\}$ are:

$$G_i = \Phi^+(G^{\Delta}_i(R'_{N^{can}})^s), \quad ilde{G}_i = \Phi^-(G^{\Delta}_i(R'_{N^{can}})^s),$$

where *s* is determined by $\forall_i \det G_i^{\Delta} = (-1)^s$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 critical points: signature (---) or (++--)

Asymptotics of the vertex amplitude

There exists ϕ (depending on the choice of phases of coherent states) and geometric factors $\mathcal{N}^{\pm}_{\Lambda}$ (given by lengths and orientations of Δ) such that

$$A_{\Lambda} \approx e^{i\Lambda\phi}\Lambda^{-12} \left(\mathcal{N}_{\Delta}^{+} e^{i\Lambda\gamma^{-1}S_{\Delta}} + \mathcal{N}_{\Delta}^{-} e^{-i\Lambda\gamma^{-1}S_{\Delta}} \right)$$

where S_{Δ} is a Regge (discrete Einstein) action without cosmological constant for the flat 4-simplex Δ .

Section 5

Summary and outlook

イロト イヨト イヨト イヨト

Summary

Theorem

Let us assume that boundary data is non-degenerate, satisfies **lengths matching condition**. If **orientations matching condition is not satisfied** then amplitude is suppressed. If it is satisfied then let us consider reconstructed 4-simplex Δ for non-rescaled labels and boundary data:

 If the reconstructed 4-simplex Δ is Lorenztian then there exists φ (depending on the choice of phases of coherent states) and geometric factors N[±]_Δ such that

$$A_{v}^{\Lambda} pprox e^{i\Lambda\phi}\Lambda^{-12}\left(\mathcal{N}_{\Delta}^{+}e^{i\Lambda S_{\Delta}}+\mathcal{N}_{\Delta}^{-}e^{-i\Lambda S_{\Delta}}
ight)$$

where S_{Δ} is a Regge (discrete Einstein) action without cosmological constant for the flat 4-simplex Δ .

 If the reconstructed 4-simplex Δ is Euclidean or of split signature then there exists φ (depending on the choice of phases of coherent states) and geometric factors N[±]_Δ such that

$$\mathcal{A}_{v}^{\Lambda} pprox e^{i\Lambda\phi}\Lambda^{-12}\left(\mathcal{N}_{\Delta}^{+}e^{i\Lambda\gamma^{-1}S_{\Delta}}+\mathcal{N}_{\Delta}^{-}e^{-i\Lambda\gamma^{-1}S_{\Delta}}
ight)$$

where S_{Δ} is a Regge (discrete Einstein) action without cosmological constant for the flat 4-simplex Δ .

 If the reconstructed 4 simplex is degenerate then there exists a single stationary point, and the asymptotic behaviour is governed by a single oscillatory contribution with the phase Λφ + O(Λ) depending on the choice of phases of the coherent states.

Outlook

• Time-like normal $N^{can} = (1, 0, 0, 0)^T$. The simplicity constraints:

$$\vec{K} + \gamma \vec{L} = 0$$

is classically equivalent to $(\vec{K} + \gamma \vec{L})^2 = 0$. In the quantum theory it becomes the condition:

$$\frac{1}{4}(\rho - 2\gamma j)^2 + (\gamma^2 + 1)(k^2 - j^2) = 0.$$

Since $k \ge j$, this equation leads to $\rho = 2\gamma j$, k = j.

Space-like normal normal N^{can} = (0, 0, 0, 1)^T, *L* timelike. The simplicity constraints:

$$\vec{K} + \gamma \vec{L} = 0$$

is classically equivalent to $(\vec{K} + \gamma \vec{L})^2 = 0$ and $\vec{L} \cdot (\vec{K} + \gamma \vec{L}) = 0$. In the quantum theory the equations become:

$$\frac{1}{4}(\rho-2\gamma\jmath)^2+(\gamma^2+1)(k^2-\jmath^2)=0, k\leq \jmath,$$

$$j\rho = 2\gamma k^2$$

which has the solution $\rho = 2\gamma j$, k = j.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outlook

• Space-like normal normal $N^{can} = (0, 0, 0, 1)^T$, \vec{L} space-like. In the quantum theory the equations $(\vec{K} + \gamma \vec{L})^2 = 0$ and $\vec{L} \cdot (\vec{K} + \gamma \vec{L}) = 0$ become

$$rac{1}{4}(
ho-2\gamma\jmath)^2-(\gamma^2+1)(s^2+\jmath^2)=0,s\geq 0,$$

 $\gamma
ho=-2\gamma s^2,$

which has the solution $\rho = -\frac{2}{\gamma} j$, $j = \gamma s$. However, classically $(\vec{K} + \gamma \vec{L})^2 = 0$ and $\vec{L} \cdot (\vec{K} + \gamma \vec{L}) = 0$ does not imply $\vec{K} + \gamma \vec{L} = 0$.

Thank you for your attention!

イロト イヨト イヨト イヨト