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Ponzano-Regge spin-foam model

Let M be a triangulated compact 3-manifold. To each edge of the triangulation we
assign a non-negative half-integer or integer j . A spin-foam amplitude in the
Ponzano-Regge model is

ZPR =
∏

interior edges

(−1)2j (2j + 1)
∏

interior triangles

(−1)j1+j2+j3
∏

tetrahedra

{
j1 j2 j3
j4 j5 j6

}
.

Ponzano and Regge noticed that in the limit of large spins{
j1 j2 j3
j4 j5 j6

}
∼

√
2

3πV
cos(SRegge +

π

4
),

where SRegge =
∑

e `eϑe, `e = je + 1
2 .
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Vertex amplitude for 4D Lorentzian Gravity

The generalizations of the 6j-symbol for 4D Lorentzian Gravity have been
proposed [Barrett, Crane ’00; Engle, Pereira, Rovelli, Livine ’07; Friedel, Krasnov
’07].

It has been shown that in the limit of large spins the EPRL vertex amplitude
relates to the Regge action of 4D Gravity in similar way as 6j-symbol relates to the
Regge action of 3D Euclidean Gravity [Barrett, Dowdall, Fairbairn, Henrique
Gomes, Frank Hellmann ’09; Barrett, R J Dowdall, Winston J Fairbairn, Frank
Hellmann and Roberto Pereira ’09]

In its original formulation the EPRL model applies to tetrahedra with time-like
normals. It has been later extended include tetrahedra with space-like normals
[Conrady, Hnybida ’10]
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Classical 4-simplex
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4-simplex

4-simplex

A 4-simplex is a convex hall of 5 different points
x0, x1, x2, x3, x4 ∈ R4. We can a triangle by the 2
points which are not contained the triangle. To each
ordered pair (ij) there correspons a bivector B∆

ij , for
example:

B∆
12 = (x3 − x0) ∧ (x4 − x0).

The bivectors have the following properties:

B∆
ij = −B∆

ji ,

∀i
∑
j 6=i

B∆
ij = 0.
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Geometry of a 4-simplex

Metric

The space R4 can be equipped with a flat metric gµν . The relevant signatures will be
(+−−−), (−−−−), (+ +−−).

The area of the triangles

The area of a (space-like) triangle is given by

A∆
ij =

1
2
|B∆

ij |.

Outward pointing normal to a tetrahedron

We consider outward pointing vector N∆
i normal to the tetrahedron i ,

∀j 6=i B∆
ij yN∆

i = 0, N∆
i ·N

∆
i = t i = ±1.
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Dihedral angle in Euclidean (−−−−) or split signature (+ +−−)

Dihedral angle in Euclidean (−−−−) or split signature (+ +−−)

The dihedral angle is a unique angle θij such that

cos θij = tcan′N∆
i ·
′ N∆

j , tcan′θij ∈ (0, π)
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Dihedral angles in Lorentzian signature (+−−−)

thick wedges thin wedges

If N∆
i · N

∆
j > 0 and Ncan

i = Ncan
j , then the dihedral angle θij > 0 is the unique

angle such that
N∆

i · N
∆
j = cosh θij

If N∆
i · N

∆
j < 0 and Ncan

i = Ncan
j , then the dihedral angle θij < 0 is the unique

angle such that
N∆

i · N
∆
j = − cosh θij .

If Ncan
i 6= Ncan

j , then the dihedral angle θij is the unique angle such that

N∆
i · N

∆
j = sinh θij .
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Regge action

By Ag2gaeh - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45038421

The contribution to the Regge action from a 4-simplex ∆

S∆ =
∑
i<j

A∆
ij θij .
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Section 3

Quantum 4-simplex
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Quantum tetrahedron in 3D: signature (+,+,+)

The Livine-Speziale coherent intertwiner

ιLS =

∫
SU(2)

du D1 (u)
∣∣1~n1

〉
⊗ D2 (u)

∣∣2~n2
〉
⊗ D3 (u)

∣∣3~n3
〉
⊗ D4 (u)

∣∣4~n4
〉
,

where
∣∣~n〉 = Dj (u~n) |〉 , niσi = u~nσ3u−1

~n . It is an element of a Hilbert space
H = Inv

(
Hj1 ⊗ . . .⊗Hj4

)
. This space is in fact spanned by Livine-Speziale coherent

intertwiners satisfying:
1~n1 + . . .+ 4~n4 = 0.

Such intertwiners can be interpreted as quantum tetrahedra in 3D.
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The Y-map

The unitary irreducible representations of SL(2,C) in the principal series are labelled
with a half-integer  and a positive real number ρ. The representation space H(,ρ)

decomposes into representations of the SU(2) subgroup:

H(,ρ) =
∞⊕

k=

Hk .

The Y-map is the isometric embedding Y,ρ : H →H(,ρ) into the lowest spin
representation space in this decomposition.
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Quantum tetrahedron in 4D

Quantum tetrahedron in 4D with the standard time-like normal

A quantum tetrahedron in 4D with standard normal Ncan = (1, 0, 0, 0)T is obtained by
embedding the tetrahedron in 3D into 4D:

Y1,ρ1 ⊗ . . .⊗ Y4,ρ4 (ιLS),

where ρi and i satisfy a constraint:

ρi = 2γi .
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Quantum tetrahedron in 4D with any time-like normal

A quantum tetrahedron in 4D with normal N = g Ncan, where g ∈ SL(2,C), is obtained
by acting with the group element g on the coherent intertwiner:

D1,2γ1 (g)⊗ . . .⊗ D4,2γl4 (g) Yl1 ,2γ1 ⊗ . . .⊗ Y4,2γ4 (ιLS
n ).
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Quantum tetrahedron in 3D: signature (+−−)

SU(2) = {u ∈ SL(2,C) : uσ0u† = σ0} SU(1, 1) = {u ∈ SL(2,C) : uσ3u† = σ3}
su(2) = span < iσ1, iσ2, iσ3 > su(1, 1) = span < iτ0, iτ1, iτ2 >, τ0 =

σ3, τ1 = −iσ2, τ2 = iσ1
Dj (u) : H →H D+

 (u) : H+
 →H+

 , D− (u) : H− →H−
|jm〉 |m〉+ ,m ∈ {, + 1, . . .},

|m〉− ,m ∈ {. . . ,−− 1,−}
Ji = iD′(iσi ) J±a = iD′± (iτa)

(J1)2 + (J2)2 + (J3)2 |m〉 =
(+ 1) |m〉

(J±0 )2 − (J±1 )2 − (J±2 )2 |m〉± =
(− 1) |m〉±

J3 |m〉 = m |m〉 J±0 |m〉± = m |m〉±∣∣~n〉 = Dj (u~n) |〉 , niσi = u~nσ3u−1
~n

∣∣~n+
〉

+
:= D+

j (g~n) |〉+ ,∣∣~n−〉− := D− (g~n) |− 〉−,
naτa = g~nτ0g−1

~n , ~n+ = ~n,~n− = −~n
~n normalized ~n+ normalized, timelike, future-pointing

~n− normalized, timelike, past-pointing
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Quantum tetrahedron in 3D: signature (+−−)

The generalized Livine-Speziale coherent intertwiner

ιLS =

∫
SU(1,1)

du D•1 (u)
∣∣1~n1

〉
• ⊗ D•2 (u)

∣∣2~n2
〉
• ⊗ D•3 (u)

∣∣3~n3
〉
• ⊗ D•4 (u)

∣∣4~n4
〉
• .
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The Y-map

The representation space H(,ρ) decomposes into representations of the SU(1,1)
subgroup:

H(,ρ) =

 ⊕
k> 1

2

H+
k ⊕

∫ ⊕
[0,∞]

dsHεs

⊕
 ⊕

k> 1
2

H−k ⊕
∫ ⊕

[0,∞]
dsHεs

 .

The Y-map is the isometric embedding Y±,ρ : H± →H(,ρ) into the highest spin
representation space H±k in this decomposition.
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Quantum tetrahedron in 4D with standard space-like normal

Quantum tetrahedron in 4D with standard space-like normal

A quantum tetrahedron in 4D with standard normal Ncan = (0, 0, 0, 1)T is obtained by
embedding the tetrahedron in 3D into 4D:

Y•1,ρ1
⊗ . . .⊗ Y•4,ρ4

(ιLS),

where ρi and i satisfy a constraint:

ρi = 2γi .
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Quantum tetrahedron in 4D

A quantum tetrahedron in 4D with normal N = gNcan, where g ∈ SL(2,C), is obtained
by acting with the group element g on the coherent intertwiner:

D•1,2γ1 (g)⊗ . . .⊗ D•4,2γ4 (g) Y•1,2γ1 ⊗ . . .⊗ Y•4,2γ4 (ιLS).
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The vertex amplitude

The vertex amplitude

The vertex amplitude is given
by an integral:

Av =

∫ ∏
i

dgi dui
∏
i<j

β(gi Ψ̃ij , gj Ψ̃ji ),

where β is the bilinear
SL(2,C)-invariant form,

Ψ̃ij = Y◦ij ,2γij D
◦
ij

(ui )
∣∣ij~nij

〉
◦

and

gi Ψ̃ij = Dij ,2γij (gi )Ψ̃ij .
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The vertex amplitude

The vertex amplitude

The integrals over SU(2) or
SU(1,1) group can (and
should) be dropped:

Av =

∫ ∏
i

dgi dui
∏
i<j

β(gi Ψ̃ij , gj Ψ̃ji ),

where β is the bilinear
SL(2,C)-invariant form,

Ψ̃ij = Y◦ij ,2γij D
◦
ij

(ui )
∣∣ij~nij

〉
◦

and

gi Ψ̃ij = Dij ,2γij (gi )Ψ̃ij .
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The vertex amplitude

The vertex amplitude

The integrals over SU(2) or
SU(1,1) group can (and
should) be dropped:

Av =

∫ ∏
i

dgi
∏
i<j

β(gi Ψij , gj Ψji ),

where β is the bilinear
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The vertex amplitude

The vertex amplitude

One of the integrals over
SL(2,C) should also be
dropped:

Av =

∫ ∏
i

dgi
∏
i<j

β(gi Ψij , gj Ψji ),

where β is the bilinear
SL(2,C)-invariant form,

Ψij = Y◦ij ,2γij
∣∣ij~nij

〉
◦

and

gi Ψij = Dij ,2γij (gi )Ψij .
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The vertex amplitude

The vertex amplitude

The vertex amplitude is:

Av =

∫ ∏
i

dgiδ(g5)
∏
i<j

β(gi Ψij , gj Ψji ),

where β is the bilinear
SL(2,C)-invariant form,

Ψij = Y◦ij ,2γij
∣∣ij~nij

〉
◦

and

gi Ψij = Dij ,2γij (gi )Ψij .
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Large spin limit
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Extended stationary phase

Vertex amplitude as a path integral

AΛ
v =

∫ ∏
i

dgiδ(g5)
∏
i<j

β(gi Ψ
Λ
ij , gj Ψ

Λ
ji ) =

∫ ∏
i

dgiδ(g5)eΛS(g),

where S(g) =
∑

i<j Sij (g), Sij (g) = ln(β(gi Ψij , gj Ψji ))

Extended stationary phase

The key role is played by critical points g0: δS(g0) = 0, <S(g0) = 0. If S has no critical
points, the amplitude is exponentially supressed. Each critical point g0 contributes to
the asymptotic formula with an oscilatory term with phase ΛS(g0).
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Boundary data

Boundary data

The geometric boundary data are sets of vectors

vij ⊥ Ncan
i (1)

that coincide with ~vij := ρij~nij when restricted to the space orthogonal to Ncan
i .

Non-degeneracy

We will say that the boundary data is non-degenerate if for every i 3 out of 4 vectors vij
are linearly independent.
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The critical points

Critical points

The SO(1, 3) geometric solution is a collection

{Gi ∈ SO(1, 3)}i=0,...4

such that bivectors

Bij = ∗(vij ∧ Ncan
i ), B{G}ij = Gi Bij , i 6= j,

with vij defined by the boundary data satisfy

∀i 6=j B
{G}
ij = −B{G}ji ,

∀i
∑
j 6=i

Bij = 0.
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Gauge symmetries

Inversion

The inversion I ∈ SO(1, 3) is defined by

∀v Iv = −v

It does not belong to SO+(1, 3).

Gauge symmetries

Two geometric solutions {Gi}, {G′i } are gauge equivalent if there exists G ∈ SO(1, 3)
and si ∈ {0, 1} such that

∀i G′i = GGi Isi

These gauge transformations are called inversion gauge transformation.
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Gram matrix

Lemma 18. :)

If boundary data is non-degenerate then for every i there exists a unique up
translations tetrahedron with outward pointing normals ~vij .

Length matching

The edge lengths are determined uniquely as functions of ~vij . Let us denote the signed
square lengths of the edge

l i 2
jk between faces (ij) and (ik) of the tetrahedron i.

This numbers are defined for i, j, k pairwise different and are symmetric in j, k .
The geometric boundary data satisfies lengths matching condition if lk 2

ij is symmetric
in all its indices.
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Gram matrix

Definition (Signed square lengths)

If lengths matching condition is satisfied we define signed square lengths

l2ml = lk 2
ij , for m, l the remaining missing indices different from i, j, k

These lengths determines 4 simplex unique up to orthogonal transformation and shifts.

Definition (Gram matrix)

Gram matrix of the 4 simplex

Gl =


0 1 1 · · · 1
1 0 l201 · · · l204
1 l210 0 · · · l214
...

...
...

. . .
...

1 l240 l241 · · · 0
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4-simplex corresponding to a Gram matrix

Theorem

Let us denote the signature of Gl by (p + 1︸ ︷︷ ︸
+

, q + 1︸ ︷︷ ︸
−

, n︸︷︷︸
0

) .

If n = 0 then there exists a unique up to O(p, q) o R4 transformations
non-degenerate 4 simplex in the spacetime with metric gµν of signature (p, q)
with these lengths. There are two inequivalent 4-simplices up to SO(p, q) o R4

transformations

If n > 0 then there exists a unique up to O(p, q) o Rp+q transformations
degenerate 4 simplex in the signature (p, q) with these lengths.
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Orientation matching

Orientation matching

Use the canonical embedding Ncan
i
⊥ → R4 to map the tetrahedron reconstructed from

the outward pointing normals ~vij into R4. Consider affine isometries ϕi of (R4, gµν) that
map the reconstructed tetrahedron into the corresponding tetrahedron in a 4-simplex
reconstructed from the Gram matrix. Denote by

G∆
i := Dϕi .

We say that the boundary data satisfies orientation matching condition if for any
reconstructed 4-simplex

∀i det G∆
i = r = (−1)s.

The sign r = (−1)s will be called the Plebański orientation.
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Classification of critical points

Lenght matching

Orientation matching

Is the reconstructed 4-simplex
non-degenerate?

2 critical points

Yes

1 critical point

No

Yes

No critical
points

No

Yes

At most 1
critical point

No

If there are no critical points, then the vertex amplitude with the boundary data is
suppressed. If there is precisely 1 critical point, then the asymptotic behaviour is
governed by a single oscilatory contribution Λφ+ O(Λ) with the phase depending on
the choice of phases of the coherent states.
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2 critical points: signature (+−−−)

Definition (Reflections)

We can introduce reflections with respect to the normalized (to ±1 vector N)

(RN )µν = Iµν −
2Nµ Nν

N·N
∈ O = O(p, q)

where we lowered index with use of the metric.

Critical points

If the reconstructed 4-simplex ∆ is Lorentzian then the (gauge equivalence classes of
the) two distinct critical points {Gi} and {G̃i} are:

Gi = G∆
i (RNcan

i
)s, G̃i = ReαGi RNcan

i
(2)

where s is determined by ∀i det G∆
i = (−1)s , eα is any normalized to ±1 vector.
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2 critical points: signature (+−−−)

Asymptotics of the vertex amplitude

There exists φ (depending on the choice of phases of coherent states) and geometric
factors N±∆ (given by lengths and orientations of ∆) such that

AΛ ≈ eiΛφΛ−12
(
N+

∆ eiΛS∆ +N−∆ e−iΛS∆

)
where S∆ is a Regge (discrete Einstein) action without cosmological constant for the
flat 4-simplex ∆.
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2 critical points: signature (−−−−) or (+ +−−)

Critical points

Let us introduce auxiliary space M4′ that differs from Minkowski space M4 by flipping
the norm of Ncan

g′µν = gµν − 2
Ncan
µ Ncan

ν

Ncan · Ncan

where we used gµν for lowering indices. Let V = (Ncan)⊥. The following exact
sequence holds

0→ {1, I} → SO(M4′)
Φ−→ SO(V )× SO(V )→ Z2

where Φ(G) = (Φ+(G), Φ−(G)).
If the reconstructed 4-simplex ∆ is Euclidean or of split signature then the (gauge
equivalence classes of the) two distinct critical points {Gi} and {G̃i} are:

Gi = Φ+(G∆
i (R′Ncan )s), G̃i = Φ−(G∆

i (R′Ncan )s),

where s is determined by ∀i det G∆
i = (−1)s .
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2 critical points: signature (−−−−) or (+ +−−)

Asymptotics of the vertex amplitude

There exists φ (depending on the choice of phases of coherent states) and geometric
factors N±∆ (given by lengths and orientations of ∆) such that

AΛ ≈ eiΛφΛ−12
(
N+

∆ eiΛγ−1S∆ +N−∆ e−iΛγ−1S∆

)
where S∆ is a Regge (discrete Einstein) action without cosmological constant for the
flat 4-simplex ∆.
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Section 5

Summary and outlook
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Summary

Theorem

Let us assume that boundary data is non-degenerate, satisfies lengths matching condition. If
orientations matching condition is not satisfied then amplitude is suppressed. If it is satisfied
then let us consider reconstructed 4-simplex ∆ for non-rescaled labels and boundary data:

If the reconstructed 4-simplex ∆ is Lorenztian then there exists φ (depending on the choice
of phases of coherent states) and geometric factorsN±∆ such that

AΛ
v ≈ eiΛφΛ−12

(
N+

∆ eiΛS∆ +N−∆ e−iΛS∆
)

where S∆ is a Regge (discrete Einstein) action without cosmological constant for the flat
4-simplex ∆.

If the reconstructed 4-simplex ∆ is Euclidean or of split signature then there exists φ

(depending on the choice of phases of coherent states) and geometric factorsN±∆ such that

AΛ
v ≈ eiΛφΛ−12

(
N+

∆ eiΛγ−1S∆ +N−∆ e−iΛγ−1S∆

)
where S∆ is a Regge (discrete Einstein) action without cosmological constant for the flat
4-simplex ∆.

If the reconstructed 4 simplex is degenerate then there exists a single stationary point, and
the asymptotic behaviour is governed by a single oscillatory contribution with the phase
Λφ + O(Λ) depending on the choice of phases of the coherent states.
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Outlook

Time-like normal Ncan = (1, 0, 0, 0)T . The simplicity constraints:

~K + γ~L = 0

is classically equivalent to (~K + γ~L)2 = 0. In the quantum theory it becomes the
condition:

1
4

(ρ− 2γ)2 + (γ2 + 1)(k2 − 2) = 0.

Since k ≥ j , this equation leads to ρ = 2γ, k = .

Space-like normal normal Ncan = (0, 0, 0, 1)T , ~L timelike. The simplicity
constraints:

~K + γ~L = 0

is classically equivalent to (~K + γ~L)2 = 0 and ~L · (~K + γ~L) = 0. In the quantum
theory the equations become:

1
4

(ρ− 2γ)2 + (γ2 + 1)(k2 − 2) = 0, k ≤ ,

ρ = 2γk2,

which has the solution ρ = 2γ, k = .
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Outlook

Space-like normal normal Ncan = (0, 0, 0, 1)T , ~L space-like. In the quantum theory
the equations (~K + γ~L)2 = 0 and ~L · (~K + γ~L) = 0 become

1
4

(ρ− 2γ)2 − (γ2 + 1)(s2 + 2) = 0, s ≥ 0,

ρ = −2γs2,

which has the solution ρ = − 2
γ
,  = γs. However, classically (~K + γ~L)2 = 0 and

~L · (~K + γ~L) = 0 does not imply ~K + γ~L = 0.
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Thank you for your attention!
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