
New boundary variables 
for CQG on a null surface

Wolfgang Wieland, Perimeter Institute

—— 
LOOPS17, Warsaw



Motivation



Why spinors?
• Lesson from the standard model: Fermions couple to 

tetrad and connection. 
- Quantum gravity is not about quantising the metric manifold, but 
about the quantum geometry of the entire spin bundle. 

- The relevant gauge group is SL(2,ℂ). 

• Lesson from GR: Spinors are useful tools for e.g. proving 
positivity of energy, analysing causal and asymptotic 
structure of spacetime. We need these tools in QG as well. 

• Lesson from LQG: Bulk geometry described by spin 
networks. If they hit a boundary, they create a surface 
charge (namely a spinor). 

• Lesson from QI: Spin is the fundamental unit of information 
- recent thoughts on geometry and information: [Carrozza, Hoehn, Mueller]
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triangulations of space. In addition, the derivation is manifestly Lorentz in-
variant. Finally (section 4), we explain the compatibility of the result with
loop gravity in the spin network representation.

The paper is part of a wider effort [4, 5, 9] to understand null surfaces,
causal structures and internal boundaries in non-perturbative and canonical
quantum gravity in terms of the spinorial representation of loop quantum
gravity [10–12]. A similar formalism using metric variables (rather than
spinors) is being developed by Freidel and collaborators [13, 14], see also
[15] for gravity in three dimensions. In addition, our results are probably
relevant for the so-called BF representation [16, 17] as well.2
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Figure 1: In loop quantum gravity the quantum states of the gravitational field are built
from gravitational Wilson lines (lying in a three-dimensional spatial hypersurface). These
Wilson lines can hit a two-dimensional boundary C, where they create a surface charge,
namely a spinor-valued surface density πA.

2. Boundary and corner terms for self-dual variables

Consider then general relativity in the self-dual formulation [6]. The
configuration variables in the bulk are the self-dual Plebański area two-

2Bahr, Dittrich and Geiller [16, 17] have proposed recently a radical reformulation
of loop quantum gravity in the continuum, which is built over a distributional vacuum
peaked at flat or constantly curved three-geometries. In this new representation, one
finds a more complicated area spectrum [17]. In our continuous Fock representation, the
original loop gravity area spectrum is recovered (up to quantisation ambiguities). The
two representations are therefore likely unitarily inequivalent, such that normalised states
in one representation may only reappear as distributions in the other.
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LQG spinor representation
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• Question: What are then the LQG spinors in the continuum? 
Not just a technical question, crucial for understanding: (i) LQG continuum limit,  
(ii) relation between bulk+boundary in QG, (iii) black holes, null infinity and causal diamonds. 

• Answer: LQG spinors are boundary variables (~edge modes) on a null surface.
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Figure 1. In loop quantum gravity the quantum states
of the gravitational field are built from gravitational Wil-
son lines (lying in a three-dimensional spatial hypersurface).
These Wilson lines can hit a two-dimensional boundary C,
where they create a surface charge, namely a spinor-valued
surface density πA.

in the class of all fields that satisfy the simplicity constraints

Σ(AB ∧ΣCD)
!
= 0, (6a)

ΣAB ∧ Σ̄A′B′
!
= 0, (6b)

ΣAB ∧ΣAB + Σ̄A′B′ ∧ Σ̄A′B′ !
= 0. (6c)

The simplicity constraints guarantee that the area two-form ΣAB is compat-
ible with the existence of a Lorentzian metric gab = ϵAB ϵ̄A′B′eAA′

aeBB′
b for

a tetrad eAA′
a = −ēA

′A
a, such that either3

ΣAB = ∓
1

2
eAC′ ∧ eB

C′ , or

ΣAB = ∓
i

2
eAC′ ∧ eB

C′ .
(7)

The equations of motion for any one of these solutions are then the torsionless
condition,

∇ΣA
B = 0 ⇔ ∇[aΣ

AB
ab] = 0 (8)

and the Einstein equations, which demand that the curvature be Ricci flat

FA
B = ΨA

BCDΣ
CD, (9)

where ∇ = d + [A, ·] is the exterior covariant derivative and ΨABCD =
Ψ(ABCD) is the spin (2, 0) Weyl spinor.

The action (5) contains two coupling constants, namely Newton’s con-
stant G, which is a mere conversion factor between units of action and units
of area (for ! = c = 1), and the Barbero – Immirzi parameter β, which is a

3We will later restrict ourselves to only one of these four solution sectors, namely the first

ΣAB = − 1

2
eAC′ ∧ eBC′ , which corresponds to ΣAA′BB′ = −ϵ̄A′B′ΣAB − ϵABΣ̄A′B′ =

eAA′ ∧ eBB′ and a signature (−+++) metric gab.

• LQG in the (discrete) spinor representation:

Flux s

Holonomy s

Poissson brackets s         

Constraints s

• Holonomies and fluxes have a clean continuum interpretation:



Perspectives
• Based on LQG spinor representation 

- Speziale, Freidel: Twistors to twisted geometries, arXiv:1006.0199. 
- Over the last couple of years, this evolved into the spinorial representation of LQG: [Freidel, 
Speziale; Livine; ww; Bianchi, Guglielmon, Hackl, Yokomizo; Hnybida; Langvik; Anzà; Martín-
Benito; Borja, Díaz-Polo, Garay; Tambornino; Langvik; Zhang; Dupuis, Girelli; Rennert; Chen, 
Banburski; Bonzom,…] 

• Relevant for other approaches as well 
- Isolated Horizons, black hole entropy, relation between bulk and boundary geometry [Ashtekar, 
Lewandowski, Beetle, Engle,…, Perez, Pranzetti,…] 

- Quasi-local observables (“edge modes”) in GR and QG […, Strominger, …, Pranzetti, Donnelly, 
Freidel, Hopfmüller; De Paoli, Speziale; Campiglia, Laddha;…] 

- New representations and area spectrum [Dittrich, Geiller; Bahr et. al.] 
- collapse of null shells, BH to WH transitions?  [Rovelli, Haggard, Barau, Vidotto; Gambini et. al.] 
- reconstruction of geometry from information theory, see recently: [Carrozza, Mueller, Höhn]
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[1] ww: Fock representation of gravitational boundary modes and the discreteness of the area spectrum, arXiv:1706.00479. 
[2] ww: New boundary variables for classical and quantum gravity on a null surface, arXiv:1704.07391. 
[3] ww: Discrete gravity as a TFT with light-like curvature defects, JHEP 5 (2017), arXiv:1611.02784. 

mailto:https://arxiv.org/abs/1006.0199?subject=
https://arxiv.org/abs/1706.00479
https://arxiv.org/abs/1704.07391
https://arxiv.org/abs/1611.02784


Outline

• LQG spinors are the boundary variables for GR on a null surface 

• Quantum geometry with null boundaries: Area quantisation 
without spin networks 

• Proposal for the dynamics: LQG as a TFT with null defects 

• Conclusion
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Boundary spinors



Self-dual variables in a diamond
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Gravitational boundary modes and the discreteness of area 7

The variation of the action determines both the equations of motion
and the covariant symplectic potential (at the pre-symplectic or kinematical
level), namely

δS = EOM · δ +Θ∂M(δ). (18)

For each one of the boundary components, there is then a term in the pre-
symplectic potential, namely8

ΘΣ± =
i

8πG

β + i

β

[

∫

Σ±

ΣAB ∧ dAAB +

∫

C±

η
±
Adℓ

A
±

]

+ cc., (19a)

ΘN± = ∓
i

8πG

β + i

β

∫

N±

[

η
±
Aℓ

A
± ∧ dω + η

±
A ∧ dψA

±

]

+ cc. (19b)

In the following, we will restrict ourselves to only one such component, namely
Σ+ ≡ Σ. The symplectic potential ΘΣ consist of a three-dimensional integral
over the interior, and an additional two-dimensional integral over the corner
C ≡ C+. The goal of the remaining part of the paper is to study the quanti-
sation of the phase space at this two-dimensional corner alone. The canonical
analysis of the entire phase space including the new boundary variables η±

Aab

and ℓA± will be left to a forthcoming publication in this series. The approach
so far is therefore incomplete: we will quantise the symplectic structure at
the corner, but we will leave the degrees of freedom in the bulk classical.
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Figure 2. We are considering the gravitational field in a
four-dimensional causal region M, whose boundary has four
components, namely the three-dimensional null surfaces N+

and N−, which have the topology of a cylinder [0, 1]×S2, and
the spacelike disks Σ− and Σ+ at the top and bottom. The
boundary has three corners, which appear as the boundary
of the (null) boundary, namely ∂N+ = C+∪C−1o and ∂N− =
Co ∪C

−1
− . All these manifolds carry an orientation, which is

induced from the bulk: ∂M = Σ−1− ∪N− ∪N+ ∪Σ+.

8The exterior functional differential is denoted by “d”.

• Goal: To understand LQG spinors from GR perspective. 
• Well, now, in relativity, a spinor is the square root of a null vector.

• LQG is a based on a canonical quantisation of GR in terms of 
Ashtekar variables.  ↝  Consider Hamiltonian GR in a situation where 
there are already null surfaces: Finite domains with null boundaries. 

• The action consists of bulk, boundary and corner terms. 
• Boundary term is needed, because we now have the  

additional constraint that the boundary is null. 
 



New boundary action
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• Action in the bulk: 
- a physical motion extremises the BF action 

- in the class of all fields that satisfy the reality conditions

• Action at the boundary:

• Boundary conditions: null surface extrinsic curvature fixed, i.e.:
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Co ∪C

−1
− . All these manifolds carry an orientation, which is

induced from the bulk: ∂M = Σ−1− ∪N− ∪N+ ∪Σ+.

8The exterior functional differential is denoted by “d”.



Boundary variables
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• What is the geometric meaning of the boundary spinors? — Similar to 
tetrad vs.metric: boundary spinors determine entire intrinsic geometry of 

• Spin (0,0) singlet: determines the area two-form

• Spin (1,0) tensor component: Plebański two-form 
(glueing condition between bulk+boundary)

• Spin (1/2,1/2) vector component: defines null generators

8 Wolfgang Wieland

N

C

ℓa

Figure 2. We are considering the gravitational field in a
four-dimensional causal region M, whose boundary has four
components, namely the three-dimensional null surfaces N+

and N−, which have the topology of a cylinder [0, 1]×S2, and
the spacelike disks Σ− and Σ+ at the top and bottom. The
boundary has three corners, which appear as the boundary
of the boundary, namely ∂N+ = C+ ∪ C−1o and ∂N− =
Co ∪C

−1
− . All these manifolds carry an orientation, which is

induced from the bulk: ∂M = Σ−1− ∪N− ∪N+ ∪Σ+.

fundamental Poisson brackets are given by
{
πA(z), ℓ

B(z′)
}
C
= δBAδ

(2)(z, z′), (22a)
{
π̄A′(z), ℓ̄

B′(z′)
}
C
= δB

′

A′ δ
(2)(z, z′), (22b)

where δ2(·, ·) is the two-dimensional Dirac distribution at the corner. All
other Poisson brackets among the canonical variables vanish identically.

The spinors ℓA and πA are not arbitrary. The reality conditions (14)
constrain the spin (0, 0) singlet πAℓA to satisfy

C =
i

β + i
πAℓ

A + cc. = 0. (23)

The reality conditions are necessary for the spinors to be compatible with a
real and Lorentzian metric in a neighbourhood of the corner. On the C =
0 constraint hypersurface in phase space, we can then find the following
identities for the area in terms of the canonical variables, namely

Ar[C] = −i

∫

C

ηAℓ
A ≈

1

2i

∫

C

(
ηAℓ

A − cc.
)
≈ 4πiβG

∫

C

(πAℓ
A − cc.). (24)

NB: spinors are unique up to complexified U(1) transformations.



Symplectic structure
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• Variation of the bulk+boundary action

• Symplectic structure on 𝒩:

• Symplectic structure on 𝜮: Contains contribution from the boundary of the (null) boundary

• EOM in the bulk: Einstein equations and torsionless condition 
• EOM at boundary: Glueing conditions + boundary EOMs



Phase space at the corner
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• Canonical momentum: a spinor-valued two-surface density

• Reality conditions = simplicity constraint in the continuum

• Canonical Poisson brackets at the corner

• Configuration variable: null flag
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Charges and gauge symmetries

• Gauge symmetries (degenerated directions of symplectic two-form) 

- Diffeomorphisms generated by vector fields that vanish at the two-surface corner 

- SL(2,ℂ) frame rotations (including transformations that do not vanish at the corner) 

- twisted U(1) transformations of the spinors, generated by reality conditions 

• Hamiltonian motions 

• Diffeomorphisms along null generators not integrable (unless first law is satisfied) 
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-  U(1) transformations

-  dilatations

-  diffeos preserving 𝒞        



Quantisation



LQG Landau operators
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• Canonical Poisson commutation relations at two-dimensional corner

• Strategy: define harmonic oscillators, and quantise them — this requires additional fiducial structures.

- fiducial (unphysical) area density

- hermitian metric (in spin bundle)

• Landau operators
NB: essentially a ‘frequency’



In QG area is quantised
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• Fock vacuum

• Oriented area

• Reality conditions

-  U(1) generator

-  squeeze operator

-  physical states       

eigenvalues:



Relation to LQG

 17

• Fock vacuum gauge equivalent to a totally squeezed state

• Such a totally squeezed state satisfies formally (spinorial analogue of AL vacuum)

• Relation to LQG: Excite the Fock vacuum only over a certain number of punctures



Dynamics: LQG as a TFT



LQG as a 4d TFT with defects
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Figure 2. We are considering the gravitational field in a
four-dimensional causal region M, whose boundary has four
components, namely the three-dimensional null surfaces N+

and N−, which have the topology of a cylinder [0, 1]×S2, and
the spacelike disks Σ− and Σ+ at the top and bottom. The
boundary has three corners, which appear as the boundary
of the boundary, namely ∂N+ = C+ ∪ C−1o and ∂N− =
Co ∪C

−1
− . All these manifolds carry an orientation, which is

induced from the bulk: ∂M = Σ−1− ∪N− ∪N+ ∪Σ+.

fundamental Poisson brackets are given by

{
πA(z), ℓ

B(z′)
}
C
= δBAδ

(2)(z, z′), (22a)
{
π̄A′(z), ℓ̄

B′(z′)
}
C
= δB

′

A′ δ
(2)(z, z′), (22b)

where δ2(·, ·) is the two-dimensional Dirac distribution at the corner. All
other Poisson brackets among the canonical variables vanish identically.

The spinors ℓA and πA are not arbitrary. The reality conditions (14)
constrain the spin (0, 0) singlet πAℓA to satisfy

C =
i

β + i
πAℓ

A + cc. = 0. (23)

The reality conditions are necessary for the spinors to be compatible with a
real and Lorentzian metric in a neighbourhood of the corner. On the C =
0 constraint hypersurface in phase space, we can then find the following

• Basic idea: 
- keep the variables at the boundary, but modify gravity in the bulk 

• More explicilty: 
- decompose spacetime into four-dimensional cells 
- impose that the connection be flat (or constantly curved) 

in every four-cell 
- the internal boundaries be null 
- the intrinsic three-geometries match across the interface

• Equations of motion and glueing conditions:

-  𝝠-flatness in the bulk

-  bulk to boundary

- boundary to 
boundary



pp-waves as special solutions
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[ww: Discrete gravity as a TFT with defects, JHEP 5 (2017), arXiv:1611.02784]

• Action consists of bulk, boundary and corner terms: 
- Hamiltonian analysis: No local DOF 
- Integrating out the fields in the bulk yields SL(2,ℂ) Chern-Simons 

action at internal boundaries coupled to boundary spinors 
- All physical degrees of freedom can only appear in certain non-

local moduli (at the corners). Manifest themselves as central 
charges in the algebra of constraints? 

- Einstein equations hold everywhere except at the corners 𝒞. 

• Solutions represent impulsive gravitational waves 
- Spin (2,0) (Weyl) and spin (1,1) curvature spinors:

8 Wolfgang Wieland

N

deficit angle

impulsive gravity wave

C
M

M
˜

Figure 2. We are considering the gravitational field in a
four-dimensional causal region M, whose boundary has four
components, namely the three-dimensional null surfaces N+

and N−, which have the topology of a cylinder [0, 1]×S2, and
the spacelike disks Σ− and Σ+ at the top and bottom. The
boundary has three corners, which appear as the boundary
of the boundary, namely ∂N+ = C+ ∪ C−1o and ∂N− =
Co ∪C

−1
− . All these manifolds carry an orientation, which is

induced from the bulk: ∂M = Σ−1− ∪N− ∪N+ ∪Σ+.

fundamental Poisson brackets are given by
{
πA(z), ℓ

B(z′)
}
C
= δBAδ

(2)(z, z′), (22a)
{
π̄A′(z), ℓ̄

B′(z′)
}
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= δB
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where δ2(·, ·) is the two-dimensional Dirac distribution at the corner. All
other Poisson brackets among the canonical variables vanish identically.

The spinors ℓA and πA are not arbitrary. The reality conditions (14)
constrain the spin (0, 0) singlet πAℓA to satisfy

C =
i

β + i
πAℓ

A + cc. = 0. (23)

The reality conditions are necessary for the spinors to be compatible with a
real and Lorentzian metric in a neighbourhood of the corner. On the C =
0 constraint hypersurface in phase space, we can then find the following

https://arxiv.org/abs/1611.02784


Conclusion



Summary
• The LQG spinors are the canonical boundary variables for gravity on a null surface 

- realises a version of quasi-local holography. 
- recasts LQG into a quantum theory of spin bundles 𝕊(𝒩,ℂ2) over null boundaries. 

• LQG area quantisation 
- compatible with local SL(2,ℂ) gauge invariance 
- compatible with fundamental structure of the light cone (suggesting no 
modification of the dispersion relations due to quantum discreteness). 

- No discrete structures such as spin-networks or triangulations enter the 
derivation. LQG area spectrum is robust under change of representation (AL v. 
Fock). 

• Dynamics: LQG as a four-dimensional TFT with null defects 
- basic idea: Keep the same null boundary variables as in GR (namely the new  
boundary spinors), but modify theory in the bulk by imposing that the geometry 
be locally flat (departure from GR as in Regge calculus). 

- special solutions: pp-wave spacetimes.
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