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AdS/CFT 

Figure 1: ADS and ADS with a unit black hole. The green region indicates the stretched
horizon which extends to a distance lads above the horizon.

segments may be thought of as a qubit representing the way the string turns from segment

to segment.

Another way to view the long-string model is to begin with a very coarse-grained version

of the dual gauge theory. Given that � ⇠ 1, the useful gauge invariant regulated description

is Hamiltonian lattice gauge theory [18]. From the UV/IR connection, one expects that

the degrees of freedom of a unit black hole are captured by a large N lattice gauge theory

containing just a small number of lattice sites; for example a lattice gauge theory on a

single cubic cell. At large N the theory has a thermal de-confinement transition, similar

to the Hawking page transition, at which the thermal entropy is dominated by states of a

single long chromo-electric flux string.

The stretched horizon of a string-like black hole has a thickness of order ls. In the

present case the string scale is the ADS radius, so that the stretched horizon extends out

to a distance lads; in other words to the outer boundary of the green region in figure 1.

The idealized strings of string theory are integrable and have exact degeneracies which

we don’t expect to find in black holes. The energy spectrum of a black hole is chaotic and

consists of non-degenerate energy levels. The average spacing is e

�S but with statistics

typical of quantum-chaotic systems. Since chaos will play a key role in what follows we
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This	
  paradigm	
  is	
  motivated	
  by	
  low	
  dimensional	
  examples

2D	
  dilaton gravity	
  	
  	
  	
  	
  ßà SYK	
  model

3D	
  	
  AdS gravity	
  	
  	
  	
  ßà 2D	
  	
  CFT	
  

Both	
  gravity	
  models	
  are	
  exactly	
  quantizable as	
  LQG	
  theories!
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Holography	
  relates	
  shockwave	
  interaction	
  to	
  butterfly	
  effect

Lyapunov behavior

Quantum	
  Chaos

relations of the Goldstone fields ξ(u) and η(v). We will find that the thermal expectation

value of the commutators squared

〈

[ξ(u), ξ(0)]2
〉

∼ e2λu,
〈

[η(v), η(0)]2
〉

∼ e2λv, (1.5)

initially grow exponentially with the time separation, with a temperature dependent Lya-

punov exponent λ = 2π/β. In fact, we will derive the somewhat more precise result that,

inside a thermal expectation value, the commutator between two generic local operators

takes the form5

[

W (t1), V (t2)
]

≃ ϵeλt12∂t1W (t1)∂t2V (t2) (1.6)

with ϵ some constant proportional to 1/c. This result, which holds for time-like separations

in the intermediate range c ≫ λt12 ≫ 1, matches with the bulk interpretation of the

commutator as resulting from a near horizon gravitational shockwave interaction [1, 12].

3) Ruelle resonances as poles in OPE coefficients

A main characteristic of a chaotic system is that it thermalizes: out of time ordered cor-

relation functions decay to zero at late times. The approach toward equilibrium is governed

by Ruelle resonances [13]. They appear as poles in the Fourier transform of the thermal

two-point function, or in systems that obey the ETH [14], the matrix element between two

excited states with total energy M

G(ω) =

∫

dt ⟨M |O(t)O(0)|M⟩ eiωt (1.7)

The Ruelle resonances of holographic 2D CFTs are well studied [10, 15]. As argued in

[16], the matrix element reduces (for small t) to the thermal 2-point function. Its Fourier

transform G(ω) has poles at resonant frequencies

ω = −4πi

β
(n + h), (1.8)

that coincide with the quasi-normal modes of the BTZ black hole [10]. By factorizing the

matrix element (1.7) in the intermediate channel, we can write

G(ω) =
∑

|i⟩∈HCFT

δ(M +ω−Ei)
∣

∣⟨M |O|i⟩ |2 (1.9)

= ρ(M +ω) |⟨M |O |M +ω ⟩
∣

∣

2
(1.10)

5 Here for simplicity we only consider the time dependence of the correlator. In general, the left- and
right-moving sectors each may have their own temperature and Lyapunov exponents λl,r = 2π/βl,r.
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Fig. 5: Due to the non-local definition of the (r, t) coordinate system, the

left- and right-moving fields do not commute with each other, even when they

are space-like separated.

approximation breaks down and we must start to take into account multiple commutators

between t0 and fin. The net result of this is to replace the classical algebra (7.5) by a

quantum exchange algebra of the form

fout(2)fin(1) = exp
[

λ−2eλ(−r1−r2+t2−t1)∂1∂2

]

fin(1)fout(2) (7.6)

This exchange algebra reduces to the semi-classical formula in the h̄ → 0 limit. It explic-

itly reveals the shock-wave interaction between the left and right-movers: it shows that

when an in and out-wave cross, each will undergo an exponentially growing displacement

proportional to the x±-momentum carried by the other wave (see [11]).

In the following, however, we will continue to work in the semi-classical limit. It

is clear, however, that even in this case the non-local algebra (7.5) has non-trivial conse-

quences. In particular, it tells us that, due to the quantum uncertainty principle, we should

be very careful in making simultaneous statements about the left- and right-moving fields

(that is, as long as we work in the (r, t) coordinate system).

7.2. The super-critical energy balance.

A second important consequence of the relation (6.11) is that it turns (7.1) into a

non-linear, energy preserving relation between the in- and out-fields. Namely, we can use

the conserved quantum hamiltonian H, that generates the time-evolution of the in- and

out-fields via

−i∂tfin,out(t ± r) = [H, fin,out(t ± r)] (7.7)

31

Exchange algebra:

�
in

(t2)�out

(t1) = eih̄e
�(t2�t1)

@1@2�
out

(t1)�in

(t2)

1



radii R↵ and R� scales exponentially with the time di↵erences t↵ and t�

r2 � 8(M +↵)`2 = 4`2e�(t↵�tR), t↵ ⌘ t0 � t1
(10)

r2 � 8(M +�)`2 = 4`2e�(t��tR), t� ⌘ t̃1 � t̃0,

where  is the surface gravity and tR is a time delay, given by

 = R/`2, tR = log(R2/`2). (11)

Here we recognize the characteristic exponential redshift e↵ect near black hole horizons.
Combining eqns (9) and (10), one derives the following relations [29]

� = ! � ↵ + 2↵(! � ↵)e(t↵�tR), (12)

↵ = ! � � + 2�(! � �)e(t��tR). (13)

Eqn (12) determines � as a function of ↵ and the time di↵erence t↵. We see that, due to the
exponential growth in t↵, � quickly becomes bigger than !. Once this happens, eqn (13) no
longer yields a real solution for t�. This is not surprising: as seen from fig 1, when � > !

the energy of mode A becomes negative, indicating that its trajectory has been shifted to
behind the horizon.

Now let us replace particle A and particle B by quantum mechanical wave packets. As
explained in detail in [30], we should anticipate that the second quantized mode operators �A

and �B that create both asymptotic wave packets do not commute but satisfy an exchange
relation. For spherical wave-packets – which can be simultaneously localized in time and
energy – and in the leading order semi-classical limit, we expect that this exchange relation
takes the form

�B
!�↵(t1)�

A
↵ (t0) = e

i
~S↵� �A

!��(t̃0)�
B
� (t̃1). (14)

Since �A(t1) acts in the future of �B(t0), this relation is in perfect accord with causality. It
expresses the causal e↵ect that the trajectory of A, after its encounter with B, is shifted by
the specified amount, relative to its original trajectory. The time shifts can be computed
by a similar calculation as the one that gave us the relations (12)-(13). One finds that

t̃0 � t0=�1


log

⇣! � �

↵

⌘
, t̃1 � t1 = �1


log

⇣! � ↵

�

⌘
. (15)

Note that the time delay t̃0 � t0 indeed becomes infinite when � approaches !.
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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3.1 Definition

The SYK model is defined as having a Hamiltonian

H =
X

ijk`

Jijk` 
i j k `, (18)

where Jijk` are drawn from a normal distribution. The operators obey the anticommutation
relations

{ i, j} = �ij. (19)

3.2 Initial Calculations

3.3 Large N Limit

3.4 Supersymmetry

The discussion of the supersymmetric models comes from reference [1]. In the supersym-
metric generalization, the Hamiltonian is written in terms of the supercharge

Q = i
X

i<j<k

Cijk 
i j k, (20)

where Cijk are now drawn from a Gaussian with mean 0 and variance 2J/N2. Because the
 operators are antisymmetric, the other components of C may be chosen so that C is also
antisymmetric. In this case

Q =
i

6

X

ijk

Cijk 
i j k, (21)

with the indices no longer necessarily ordered.
The Hamiltonian is defined as

H = Q2 = �
X

i<j<k

Cijk 
i j k

X

`<m<n

C`mn 
` m n. (22)

For those terms where (i, j, k) = (`,m, n), the sum becomes

X

i<j<k

C2
ijk 

i j k i j k =
1

8

X

i<j<k

C2
ijk (23)

Eventually5 the Hamiltonian becomes

H = E0 +
X

i<j<k<`

Jijk` 
i j kk `, (24)

5I’m not able to derive this. What am I missing?
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Using this free propagator we can then compute corrections due to the interaction. Let
us look at the first correction to the two point function, shown in figure 1. This arises
by bringing down two insertions of the interaction Hamiltonian and then averaging with
respect to the disorder. The disorder average is represented by a dotted line in figure 1. As
pointed out in [19], we can sometimes reproduce similar diagrams by considering ji1,··· ,iq to
be a dynamical field. Here we will stick to the disordered model. The disorder average links
the indices appearing in the two interaction Hamiltonians and we end up with a correction
that scales as J2 relative to the free two point function, with no additional factors of N ,
since we get (q � 1) factors of N from the sum over the indices of the intermediate lines.

+ + + +

Figure 1: Diagrams representing corrections to the two point function, for the q = 4 case.
The free two point function is given by the straight line. The first correction involves also
an average over disorder, which is represented by a dashed line. We have also indicated a
couple more diagrams that also contribute at leading order in N .
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Figure 2: Equations that define the summation of the leading large N contributions, for
the q = 4 case. The solid circle represents the one particle irreducible contributions. The
dotted circle represents the full two point function. This is a graphical representation of
the equations in (2.6).

Besides this first diagram, there are many more “iterated watermelon” diagrams that
contribute at leading order in N . Two more are shown in figure 1. The set of diagrams
is su�ciently simple that they can be summed by writing self consistency equations for
the sum. First, it is convenient to define a self energy, ⌃(⌧, ⌧ 0), which includes all the one
particle irreducible contributions to the propagator. By translation symmetry, ⌃(⌧, ⌧ 0) =
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The discussion of the supersymmetric models comes from reference [1]. In the supersym-
metric generalization, the Hamiltonian is written in terms of the supercharge
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where Cijk are now drawn from a Gaussian with mean 0 and variance 2J/N2. Because the
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2 The colored Boulatov Model and 3-gems
We now introduce the colored Boulatov model[30, 8]. Consider a compact Lie group

G, denote h its elements, e the unit element, and
R
dh the integral with respect to

the Haar measure of the group.

In 3-dimensions, we introduce two fields,  ̄i and  i, i = 0, 1, 2, 3 be four couples of

complex scalar (or Grassmann) fields over four copies of G,  i : G⇥G⇥G⇥G ! C.
In a generic number of dimensions i = 0, · · · , n + 1 where n is the number of

dimensions, and the  and  ̄ are functions of n copies of the group. We define e as

the identity element of the group and we denote �⇤(h), the regularized delta function

over G with some cuto↵ ⇤ such that �⇤(e) is finite, but diverges when ⇤ goes to

infinity. A feasible regularization is given, for instance for the group G = SU(2), by

�

⇤(h) =
⇤X

j=0

(2j + 1)�j(h) (1)

where �j(h) is the character of h in the representation j, and which preserves the

composition properties. The path integral for the colored Boulatov model over G

is:

Z(�, �̄) = e

�F (�,�̄) =
R Q3

i=0 dµP ( ̄i
, 

i) e�Sint( ̄i, i)
, (2)

where the Gaussian measure dµP , with P being its covariance, is chosen such that:

Z 4Y

i=0

dµP ( ̄
i
, 

i) = 1 ,

and:

Ph0h1h2;h0
0h

0
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0
2
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Z
dµP ( ̄

i
, 

i)  ̄i
h0h1h2

 

i
h0
0h

0
1h

0
2
=

=

Z
dh �

⇤
�
h0h(h

0
0)

�1
�
�

⇤
�
h1h(h

0
1)

�1
�
�

⇤
�
h2h(h

0
2)

�1
�
,

The colored model has two interactions, a “clockwise“ and an “anti-clockwise“, and

one is obtained from the other one by complex conjugation in the internal group

color, one for each face of the 3-simplex. We fix the notation for shortage of space,

 (h, p, q) =  hpq. There are two interaction terms:

S

int = �p
�⇤(e)

R Q
i,j dhi,j  

0
h03h02h01

 

1
h10h13h12

 

2
h21h20h23

 

3
h32h31h30

+

�̄p
�⇤(e)

R Q
i,j dhi,j  ̄

0
h03h02h01  ̄

1
h10h13h12  ̄

2
h21h20h23  ̄

3
h32h31h30 (3)

where hij = hji. In order to make the notation clearer, we call “red” the vertex

involving the  ’s and “black” the one involving the  ̄’s. Thus any line coming out

of a cGFT vertex has a color i.
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⌃(⌧ � ⌧ 0) and we can write the full two point function, and the definition of ⌃ as

1

G(!)
= �i! � ⌃(!) , ⌃(⌧) = J2 [G(⌧)]q�1 (2.6)

Notice that the first equation is written in frequency space while the second in the original
(Euclidean) time coordinate. Here we have assumed translation symmetry. The possible
values of the frequency depend on whether we are at � = 1, where it is continuous, or
at finite � where we have ! = 2⇡

�
(n + 1

2). When we talk about zero temperature, we are
imagining taking the large N limit first and then the zero temperature limit.

As a side comment, note that we could consider a model with a Hamiltonian which is
a sum of terms with various q’s, and with random couplings with their own variance Jq.
The large N equations for such models would be very similar except that the right hand
side of (2.6) would be replaced by ⌃ =

P

q J
2
q [G(⌧)]q�1. But we did not find any good use

for this.

2.3 The conformal limit

At strong coupling, the first equation in (2.6) can be approximated by ignoring the first
term on the right hand side. It is convenient to write these approximate equations as

Z

d⌧ 0G(⌧, ⌧ 0)⌃(⌧ 0, ⌧ 00) = ��(⌧ � ⌧ 00) , ⌃(⌧, ⌧ 0) = J2 [G(⌧, ⌧ 0)]q�1 (2.7)

Written in this form, they are invariant under reparametrizations,

G(⌧, ⌧ 0) ! [f 0(⌧)f 0(⌧ 0)]� G(f(⌧), f(⌧ 0)) , ⌃(⌧, ⌧ 0) ! [f 0(⌧)f 0(⌧ 0)]�(q�1) ⌃(f(⌧), f(⌧ 0))
(2.8)

provided that � = 1/q.
We can then use an ansatz of the form

Gc(⌧) =
b

|⌧ |2� sgn(⌧), or Gc(⌧) = b

"

⇡

� sin ⇡⌧
�

#2�

sgn(⌧) (2.9)

where we have given also the finite temperature version, which follows from (2.8) with
f(⌧) = tan ⌧⇡

�
. We can determine b by inserting these expressions into the simplified

equations and obtain

J2bq⇡ =

✓

1

2
��

◆

tan ⇡� , � =
1

q
(2.10)

We will use � and 1/q interchangeably below. To derive the first equation here, it is
convenient to use the Fourier transform

Z 1

�1
d⌧ei!⌧

sgn(⌧)

|⌧ |2� = i 21�2�
p
⇡
�(1��)

�(12 +�)
|!|2��1sgn(w) (2.11)
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1 Introduction: Schwarzian QM

In the past few years it has been recognized that holographic CFTs at finite temperature
exhibit characteristics of many body quantum chaos [1, 2, 3, 4, 5]. The SYK model is
a soluble many body quantum system with a well-controlled large N limit that exhibits
maximal chaos and other characteristics that indicate it has a holographic dual given by a 2D
gravity theory on AdS2 [2, 6, 7, 8, 9, 10, 11]. The Schwarzian theory describes the quantum
dynamics of a single 1D degree of freedom f(⌧) and forms the theoretical gateway between
the microscopic SYK model and the dual 2D dilaton gravity theory [12, 13, 14, 15, 16].

In this paper we will study the finite temperature correlation functions in the 1D quan-
tum mechanical theory described by the action

S[f ] = �C

Z �

0

d⌧

✓

�

f, ⌧
 

+
2⇡2

�2
f 02

◆

(1.1)

= �C

Z �

0

d⌧
�

F, ⌧
 

, F ⌘ tan

✓

⇡f(⌧)

�

◆

, (1.2)

where C is the coupling constant of the zero-temperature theory. We will set C = 1/2 from
here on out, unless explicitly stated. Here f(⌧ + �) = f(⌧) + � runs over the space Di↵(S1)
of di↵eomorphisms on the thermal circle, and

�

f, ⌧
 

=
f 000

f 0 � 3

2

✓

f 00

f 0

◆2

(1.3)

denotes the Schwarzian derivative.

The action S[f ] is invariant under SL(2, R) Möbius transformations that act on F via

F ! aF + b

cF + d
. (1.4)

The model possesses a corresponding set of conserved charges `a that generate the sl(2, R)
algebra [`a, `b] = i✏abc`c and commute with the Hamiltonian H. In fact, as reviewed in
section 2, the Hamiltonian H is found to be equal to the SL(2, R) Casimir, H = 1

2`a`a. The
energy spectrum and dynamics are thus uniquely determined by the SL(2, R) symmetry.
The Schwarzian theory is integrable and expected to be exactly soluble at any value of the
inverse temperature �. In the following, we will label the energy eigenvalues E in terms of
the SL(2, R) spin j = �1

2 + ik via

E(k) = �j(j + 1) =
1

4
+ k2. (1.5)
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denotes the Schwarzian derivative.

The action S[f ] is invariant under SL(2, R) Möbius transformations that act on F via

F ! aF + b

cF + d
. (1.4)

The model possesses a corresponding set of conserved charges `a that generate the sl(2, R)
algebra [`a, `b] = i✏abc`c and commute with the Hamiltonian H. In fact, as reviewed in
section 2, the Hamiltonian H is found to be equal to the SL(2, R) Casimir, H = 1

2`a`a. The
energy spectrum and dynamics are thus uniquely determined by the SL(2, R) symmetry.
The Schwarzian theory is integrable and expected to be exactly soluble at any value of the
inverse temperature �. In the following, we will label the energy eigenvalues E in terms of
the SL(2, R) spin j = �1

2 + ik via

E(k) = �j(j + 1) =
1

4
+ k2. (1.5)
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If we mod out by the overall SL(2, R) symmetry, the partition sum

Z(�) =

Z

M

Df e�S[f ] (1.6)

reduces to an integral over the infinite dimensional quotient space

M = Di↵(S1)/SL(2, R). (1.7)

This space M equals the coadjoint orbit of the identity element 1 2 Di↵(S1), which is known
to be a symplectic manifold that upon quantization gives rise to the identity representation
of the Virasoro group Di↵(S1), i.e. the identity module of the Virasoro algebra [17, 18, 19].
We choose the functional measure dµ(f) to be the one derived from the symplectic form on
M, which as shown in [20, 21, 23] takes the form Df =

Q

⌧ df/f 0.

The fact that the space M is a symplectic manifold was exploited in [23] to show that
the partition function Z is one-loop exact and given by

Z(�) =
⇣⇡

�

⌘3/2

e⇡2/� =

Z 1

0

dµ(k) e��E(k) (1.8)

with E(k) as in (1.5) and where the integration measure is given in terms of k by

dµ(k) = dk2 sinh(2⇡k). (1.9)

This exact result for the spectral density

⇢(E) = sinh
�

2⇡
p

E � 1/4
�

(1.10)

is further indication that the Schwarzian theory is completely soluble. In this paper we will
show that this is indeed the case.

For our analysis we will make use of the more detailed property that the space M in
(1.7) is not just any phase space, but forms the quantizable coadjoint orbit space that gives
rise to the identity module of the Virasoro algebra. As we will show in section 3, this
observation implies that the correlation functions of the Schwarzian theory
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can be obtained by taking a suitable large c limit of well-studied correlation functions of an
exactly soluble 2D CFT with Virasoro symmetry. In subsequent sections, we will then use
this relation to explicitly compute the correlation functions of a natural class of SL(2, R)
invariant observables Oi. We will now first summarize our main results.

3

which, up to the irrelevant constant B2-contribution, coincides with the Hamiltonian (2.3)
for the Schwarzian model at zero temperature. We can use this correspondence to derive
the exact formula for the spectral measure (1.10) of the Schwarzian theory quoted in the
introduction. Starting from Comtet’s result (2.14) and using that cos(2⇡B) diverges as
B ! i1, we deduce that (up to an irrelevant overall normalization)

dµ(k) = dk2 sinh(2⇡k). (2.16)

3 Partition function: a 2D Perspective

In this section we will study the path integral formulation of the Schwarzian theory at finite
temperature. In particular, we will use its relationship to the group Di↵(S1) to reformulate
1D Schwarzian QM as a suitable large c limit of 2D Virasoro CFT.3

The partition function of the Schwarzian is defined as the integral

Z(�) =

Z Df

SL(2, R)
e�S[f ] (3.1)

over invertible functions f , satisfying the periodicity and monotonicity constraints f(⌧+�) =
f(⌧) + � and f 0(⌧) > 0. The space of functions with these properties specifies the group
Di↵(S1) of di↵eomorphisms of the circle, also known as the Virasoro group.

The SL(2, R) quotient in (3.1) indicates that the functional integral runs over the infinite
dimensional quotient space

M = Di↵(S1)/SL(2, R) (3.2)

of di↵eomorphisms modulo the group of Möbius transformations (2.7) acting on F =tan(⇡f
�

).
This space M is called the coadjoint orbit of the identity element 1 2 Di↵(S1), which is
known to be a symplectic manifold [17, 18]. Its symplectic form takes the following form

! =

Z 2⇡

0

dx



df 0 ^ df 00

f 02 � df ^ df 0
�

. (3.3)

This observation was used by Stanford and Witten [23] to evaluate the functional integral
with the help of the Duistermaat-Heckman (DH) formula [30].

The DH formula applies to any integral over a symplectic manifold of the schematic form

I =

Z

dpdq e�H(p,q) (3.4)

3Related ideas are formulated in [22].
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1.1 Overview of results

We will study the correlation functions of the following bi-local operators
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We can think of this expression as the two-point function O`(⌧1, ⌧2) = hO(⌧1)O(⌧2)iCFT of
some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or equiv-
alently, as the boundary-to-boundary propagator of a bulk matter field coupled to the 2D
dilaton-gravity theory in a classical black hole background.

The bi-local operator (1.12) is invariant under the SL(2, R) transformations (1.4). This
in particular implies that O` commutes with the Hamiltonian H of the Schwarzian theory

[H, O`(⌧1, ⌧2)] = 0. (1.13)

So the bi-local operators are diagonal between energy eigenstates. We will see that the time-
ordered correlation functions of O`(⌧1, ⌧2) indeed only depend on the time-di↵erence ⌧2 � ⌧1.

Below we will give the explicit formulas for the correlation function with one and two
insertions of the bi-local operator O`. We will call these the two-point and four-point func-
tions, since they depend on two and four di↵erent times ⌧i, respectively. In the holographic
dual theory they correspond to the AdS2 gravity amplitude with one and two boundary-to-
boundary propagators. Our eventual interest is to compute the out-of-time ordered (OTO)
four point function, which exhibits maximal Lyapunov behavior and contains the gravita-
tional scattering amplitudes of the bulk theory as an identifiable subfactor.

Two-point function

The two-point function at finite temperature is defined by the functional integral with
a single insertion of the bi-local operator
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↵
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Here we introduced a diagrammatic notation that will be useful below.

The two-point function of the Schwarzian theory at zero temperature was obtained in
[21]. As we will show in section 4, the generalization of their result to finite temperature is
given by a double integral over intermediate SL(2, R) representation labels k1 and k2
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We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧
2

�⌧
1

)k2

1

�(��⌧
2

+⌧
1

)k2

2

�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k

= e� k2 (⌧
2

�⌧
1

) ,

k2

k1

` = �`(k1, k2) . (1.18)

The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
energy eigenstate with energy E = k2. Each vertex corresponds to a factor

�`(k1, k2) =

s

�(` ± ik1 ± ik2)

�(2`)
. (1.19)

5

1.1 Overview of results

We will study the correlation functions of the following bi-local operators

O`(⌧1, ⌧2) ⌘
 

p

f 0(⌧1)f 0(⌧2)
�
⇡

sin ⇡
�
[f(⌧1) � f(⌧2)]

!2`

. (1.12)

We can think of this expression as the two-point function O`(⌧1, ⌧2) = hO(⌧1)O(⌧2)iCFT of
some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or equiv-
alently, as the boundary-to-boundary propagator of a bulk matter field coupled to the 2D
dilaton-gravity theory in a classical black hole background.

The bi-local operator (1.12) is invariant under the SL(2, R) transformations (1.4). This
in particular implies that O` commutes with the Hamiltonian H of the Schwarzian theory

[H, O`(⌧1, ⌧2)] = 0. (1.13)

So the bi-local operators are diagonal between energy eigenstates. We will see that the time-
ordered correlation functions of O`(⌧1, ⌧2) indeed only depend on the time-di↵erence ⌧2 � ⌧1.

Below we will give the explicit formulas for the correlation function with one and two
insertions of the bi-local operator O`. We will call these the two-point and four-point func-
tions, since they depend on two and four di↵erent times ⌧i, respectively. In the holographic
dual theory they correspond to the AdS2 gravity amplitude with one and two boundary-to-
boundary propagators. Our eventual interest is to compute the out-of-time ordered (OTO)
four point function, which exhibits maximal Lyapunov behavior and contains the gravita-
tional scattering amplitudes of the bulk theory as an identifiable subfactor.

Two-point function

The two-point function at finite temperature is defined by the functional integral with
a single insertion of the bi-local operator

⌦O`(⌧1, ⌧2)
↵

=
1

Z

Z

Df e�S[f ] O`(⌧1, ⌧2) = ⌧2 ⌧1
` (1.14)

Here we introduced a diagrammatic notation that will be useful below.

The two-point function of the Schwarzian theory at zero temperature was obtained in
[21]. As we will show in section 4, the generalization of their result to finite temperature is
given by a double integral over intermediate SL(2, R) representation labels k1 and k2

⌦O`(⌧1, ⌧2)
↵

=

Z 2
Y

i=1

dµ(ki) A2(ki, `, ⌧i). (1.15)

4

t

This vertex factor represents the matrix element of each endpoint of the bi-local operator
between the corresponding two energy eigenstates.

Time ordered 4-point function

The time-ordered 4-point function comes in di↵erent types, depending on the ordering
of the four di↵erent times. The simplest ordering is

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

=
⌧3

⌧2

⌧4

⌧1`1

`2

(1.20)

where we assume that the four times are cyclically ordered via ⌧1 < ⌧2 < ⌧3 < ⌧4. This
ordering ensures that the legs of the two bi-local operators do not cross each other. This
time-ordered 4-point function is given by a triple integral over intermediate momenta

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

=

Z 3
Y

i=1

dµ(ki) A4
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�

. (1.21)

The momentum amplitude is represented by the diagram

A4
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�

=
k

s

k

s

`1

`2

k1

k4

(1.22)

Here we took into account the aforementioned result (1.13) that the bi-local operators com-
mute with the Hamiltonian, so that the same energy eigenstate (labeled by the momentum
variable ks) appears on both sides of each bi-local operator.

Applying the Feynman rules formulated above, we find that the momentum amplitude
of the time-ordered four point function reads

A4

�

ki, `i, ⌧i

�

= e�k2
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)�k2
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(ks, k4)
2. (1.23)

In section 4, we will explicitly compute the four-point function from the relationship between
the Schwarzian and 2D CFT and confirm that this is indeed the correct result.1

1Note that the amplitude (1.23) factorizes into a product of two 2-point amplitudes
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k

i

, `

i

, ⌧

i
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= e

�k

2
s A2
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k1, ks, `1, ⌧21

� A2
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k4, ks, `2, ⌧43

�

(1.24)

and thus indeed only depends on the two time di↵erences ⌧21 = ⌧2 � ⌧1 and ⌧43 = ⌧4 � ⌧3, as dictated by
equation (1.13).
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and thus indeed only depends on the two time di↵erences ⌧21 = ⌧2 � ⌧1 and ⌧43 = ⌧4 � ⌧3, as dictated by
equation (1.13).
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OTO 4-point function

Finally we will turn to our main interest, the out-of-time-ordered 4-point function [2].
We will diagrammatically represent the OTO 4-point function as

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

OTO
=

⌧2

⌧3

`2 `1

⌧4

⌧1

(1.25)

where in spite of their new geometric ordering along the circle, we in fact assume that the
four time instances continue to be ordered according to ⌧1 < ⌧2 < ⌧3 < ⌧4. Operationally, we
define the OTO correlation function via analytic continuation starting from the time ordered
correlation function with the ordering ⌧1 < ⌧3 < ⌧2 < ⌧4 as indicated by the above diagram.
Since for this configuration, the legs of the bi-local operators do in fact cross, the resulting
time ordered 4-point function di↵ers from the analytic continuation of the uncrossed 4-point
function (1.23).

In section 5, we will show that the OTO correlation function can be expressed as an
integral over four momentum variables

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

OTO
=

Z 4
Y

i=1

dµ(ki) AOTO
4

�

ki, `i, ⌧i

�

, (1.26)

where the momentum space amplitude is represented by the following diagram (to avoid
clutter, we again suppressed the times ⌧i labeling the end points of the bi-local operators)

AOTO
4

�

ki, `i, ⌧i

�

=
k

s

k

t

`2 `1

k1

k4

(1.27)

Note that we now have four di↵erent momentum variables ki. The correlation function will
indeed depend on all four time di↵erences ⌧i+1 � ⌧i.

The final answer for the momentum amplitude of the OTO 4-point function reads

AOTO
4

�

ki, `i, ⌧i

�

= e�k2
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(⌧
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�⌧
1

)�k2

t (⌧
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2
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4
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3

)�k2

s(��⌧
4
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1

) (1.28)
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Since for this configuration, the legs of the bi-local operators do in fact cross, the resulting
time ordered 4-point function di↵ers from the analytic continuation of the uncrossed 4-point
function (1.23).

In section 5, we will show that the OTO correlation function can be expressed as an
integral over four momentum variables

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

OTO
=

Z 4
Y

i=1

dµ(ki) AOTO
4

�

ki, `i, ⌧i

�

, (1.26)

where the momentum space amplitude is represented by the following diagram (to avoid
clutter, we again suppressed the times ⌧i labeling the end points of the bi-local operators)

AOTO
4

�

ki, `i, ⌧i

�

=
k

s

k

t

`2 `1

k1

k4

(1.27)

Note that we now have four di↵erent momentum variables ki. The correlation function will
indeed depend on all four time di↵erences ⌧i+1 � ⌧i.

The final answer for the momentum amplitude of the OTO 4-point function reads

AOTO
4

�

ki, `i, ⌧i

�

= e�k2

1

(⌧
2

�⌧
1

)�k2

t (⌧
3

�⌧
2

)�k2

4

(⌧
4

�⌧
3

)�k2

s(��⌧
4

+⌧
1

) (1.28)
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k
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k
1

`
2

`
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⇤

.

7

Two-­‐point	
  function

Four-­‐point	
  function

OTO	
  four-­‐point	
  function



We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧
2

�⌧
1

)k2

1

�(��⌧
2

+⌧
1

)k2

2

�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k

= e� k2 (⌧
2

�⌧
1

) ,

k2

k1

` = �`(k1, k2) . (1.18)

The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
energy eigenstate with energy E = k2. Each vertex corresponds to a factor

�`(k1, k2) =

s

�(` ± ik1 ± ik2)

�(2`)
. (1.19)

5

We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧
2

�⌧
1

)k2

1

�(��⌧
2

+⌧
1

)k2

2

�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k

= e� k2 (⌧
2

�⌧
1

) ,

k2

k1

` = �`(k1, k2) . (1.18)

The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
energy eigenstate with energy E = k2. Each vertex corresponds to a factor

�`(k1, k2) =

s

�(` ± ik1 ± ik2)

�(2`)
. (1.19)

5

We will call the integrand the ‘momentum space amplitude’. In section 4 we will obtain the
following explicit formula for A2(ki, `, ⌧i)

A2(ki, `, ⌧i) = e�(⌧
2

�⌧
1

)k2

1

�(��⌧
2

+⌧
1

)k2

2

�(` ± ik1 ± ik2)

�(2`)
, (1.16)

where �(x ± y ± z) is short-hand for the product of four gamma functions with all four
choices of signs. In the following sections, we will derive the above result from the relation
between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable large c limit
of known results in the latter. We will also perform a number of non-trivial checks on the
result. In particular, it reduces to the zero-temperature result of [21] in the limit � ! 1.

Propagators and vertices

From the above expression for the two-point function, we can extract the following com-
binatoric algorithm, analogous to the Feynman rules, for computing time-ordered correlation
functions of bi-local operators in the Schwarzian theory. We remark that these rules are still
non-perturbative in the Schwarzian theory and merely represent a convenient packaging of
the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, ⌧i) diagrammatically as

A2(ki, `, ⌧i) =

k1

⌧2 ⌧1

k2

` (1.17)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one with
‘momentum’ k2. The Feynman rule for the propagator and vertices read

⌧1⌧2

k

= e� k2 (⌧
2

�⌧
1

) ,

k2

k1

` = �`(k1, k2) . (1.18)

The propagator with momentum k represents the phase factor between ⌧1 and ⌧2 of an
energy eigenstate with energy E = k2. Each vertex corresponds to a factor

�`(k1, k2) =

s

�(` ± ik1 ± ik2)

�(2`)
. (1.19)

5

The	
  exact	
  non-­‐perturbative	
  answer	
  for	
  the	
  2n-­‐point	
  functions	
  

can	
  be	
  summarized	
  via	
  a	
  simple	
  set	
  of	
  diagrammatic	
  rules:

`propagator’ `vertex’



Comparing with the diagram (1.27), we recognize the same propagators and vertex fac-
tors as before. However, the momentum amplitude now also contains an additional factor
Rkskt

⇥

k
4

k
1

`
2

`
1

⇤

, which takes into account the e↵ect of the two crossing legs in the diagram
(1.27). From the holographic dual perspective, it represents the scattering amplitude of
particles in the AdS2 black hole background [1, 44]. Computing this crossing kernel is one
of the main goals of this paper. We will describe this computation in section 5.

The crossing kernel

The crossing kernel enters as a new entry in the Feynman rules for the Schwarzian correlation
function. It relates the crossed diagram to the uncrossed diagram via

kskt
`
2

`
1

k
1

k
4

= Rkskt

⇥

k
4

k
1

`
2

`
1

⇤

kskt

`
1

`
2

k
1

k
4

(1.29)

where the diagram on the right-hand side is evaluated according to the Feynman rules given
in equation (1.18). An alternative name for the crossing kernel is the R-matrix. The matrix
Rkskt in fact depends on six numbers, k1, k4, ks, kt, `1 and `2, that all label the spin of a
corresponding sextuplet of representations of SL(2, R). It satisfies the unitarity property

Z

dµ(k) RkskR
†
kkt

=
1

⇢(ks)
�(ks � kt), ⇢(k) = 2k sinh(2⇡k). (1.30)

The explicit form of the R-matrix can be found in several di↵erent ways. The most
convenient method uses the relation between the Schwarzian QM and 2D CFT. In section
5 we will compute Rkskt by taking a large c limit of the CFT R-matrix that expresses the
monodromy of 2D conformal blocks under analytic continuation over the lightcone. This
2D crossing kernel is explicitly known, thanks to the work of Ponsot and Teschner [24], see
also [25, 26]. As shown in [24], the 2D kernel can be expressed as a quantum 6j-symbol of
the non-compact quantum group Uq(sl(2, R)). Taking the large c limit of their formulas, we
obtain that

Rkskt

⇥

k
4

k
1

`
2

`
1

⇤

= W(ks, kt; `1 + ik1, `1 � ik1, `2 � ik4, `2 + ik4) (1.31)

⇥
p

�(`1 ± ik1 ± iks)�(`2 ± ik4 ± iks)�(`2 ± ik1 ± ikt)�(`1 ± ik4 ± ikt)

where W(a, b, c, d, e, f) denotes a so-called Wilson function, defined as a particular linear
combination of two generalized hypergeometric functions 4F3. The explicit formula is given
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OTO 4-point function

Finally we will turn to our main interest, the out-of-time-ordered 4-point function [2].
We will diagrammatically represent the OTO 4-point function as

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

OTO
=

⌧2

⌧3

`2 `1

⌧4

⌧1

(1.25)

where in spite of their new geometric ordering along the circle, we in fact assume that the
four time instances continue to be ordered according to ⌧1 < ⌧2 < ⌧3 < ⌧4. Operationally, we
define the OTO correlation function via analytic continuation starting from the time ordered
correlation function with the ordering ⌧1 < ⌧3 < ⌧2 < ⌧4 as indicated by the above diagram.
Since for this configuration, the legs of the bi-local operators do in fact cross, the resulting
time ordered 4-point function di↵ers from the analytic continuation of the uncrossed 4-point
function (1.23).

In section 5, we will show that the OTO correlation function can be expressed as an
integral over four momentum variables

⌦O`
1

(⌧1, ⌧2) O`
2

(⌧3, ⌧4)
↵

OTO
=

Z 4
Y

i=1

dµ(ki) AOTO
4

�

ki, `i, ⌧i

�

, (1.26)

where the momentum space amplitude is represented by the following diagram (to avoid
clutter, we again suppressed the times ⌧i labeling the end points of the bi-local operators)

AOTO
4

�

ki, `i, ⌧i

�

=
k

s

k

t

`2 `1

k1

k4

(1.27)

Note that we now have four di↵erent momentum variables ki. The correlation function will
indeed depend on all four time di↵erences ⌧i+1 � ⌧i.

The final answer for the momentum amplitude of the OTO 4-point function reads

AOTO
4

�

ki, `i, ⌧i

�

= e�k2

1

(⌧
2

�⌧
1

)�k2

t (⌧
3

�⌧
2

)�k2

4

(⌧
4

�⌧
3

)�k2

s(��⌧
4

+⌧
1

) (1.28)

⇥ �`
1

(k1, ks)�`
2

(ks, k4)�`
1

(k1, kt)�`
2

(kt, k4) ⇥ Rkskt

⇥

k
4

k
1

`
2

`
1

⇤

.
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R-­‐matrix

To obtain the out-of-time-ordered four point function we make the above substitution
inside of the integral expression (5.5). This leads to the final expression given in equation
(5.3), where we define the Schwarzian R-matrix via

Rkskt

⇥

k
4

k
1

`
2

`
1

⇤

=
n

`1 k4 ks

`2 k1 kt

o

. (5.12)

With this definition, the R-matrix is naturally a unitary operator relative to the spectral
measure dµ(k).

5.2 Schwarzian 6j-symbols

In this section we present the explicit expression for the Schwarzian limit of the 6j-symbols
of the Virasoro CFT. A general expression for this quantity at finite c, and its relation with
the monodromy of the 2D conformal blocks, was found by B. Ponsot and J. Teschner in [24].
For our purpose, we need to take the large c limit outlined above. Details of the calculation
are given in Appendix B.2. After some straightforward algebra, one arrives at the somewhat
daunting looking integral expression (B.28). The integral can be done by the method of
residues. The final result can be organized in the following symmetric expression

n

`1 k2 ks

`3 k4 kt

o

=
p

�(`1 ± ik2 ± iks)�(`3 ± ik2 ± ikt)�(`1 ± ik4 ± ikt)�(`3 ± ik4 ± iks)

⇥ W(ks, kt; `1 + ik4, `1 � ik4, `3 � ik2, `3 + ik2), (5.13)

where we define �(x ± y ± z) as a shorthand for the product of the gamma function with
four combinations of signs. The function that appears in the right hand side is a rescaled
version of the Wilson function introduced by W. Groenevelt [27]. The original function
introduced in [27] is denoted by W(↵, �; a, b, c, d) = �↵(�; a, b, c, 1�d) and it is proportional
to a generalized hypergeometric function 7F6 evaluated at z = 1 whose coe�cients depend
on ↵, �, a, b, c and d.

Given that the above expression was obtained as a limit of the quantum 6j-symbol,
it is natural to suspect that the result can be interpreted as a classical 6j-symbol. The
above indeed matches with the 6j-symbol associated to the Lie algebra su(1, 1) found by
W. Groenevelt [27]. The heavy operators with label ki correspond to the principal unitary
series representations of su(1, 1), while the light operators `i correspond to the discrete
series.13 The expression (5.12) enjoys tetrahedral symmetry that acts by permutations on

13Note that even though SU(1, 1) and SL(2,R) are isomorphic, their tensor categories are di↵erent and
they have di↵erent 6j-symbols.
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= ẑ2 (122)

22

Symplectic form <=> c and z are canonically dual

Hyperbolic""Ellip3c""

Figure 3: Liouville vertex operators fall into two classes. Those with � < 1
4Q

2
create elliptic

solutions (punctures), those with � > 1
4Q

2
create hyperbolic solutions (macroscopi holes) [19].

right Virasoro algebra with conformal weights �± = ↵±(Q � ↵±). The physical range of

positive conformal weights splits into two separate regimes of Liouville momenta

↵± 2 [0, 1
2
Q ] [ �

1
2
Q+ iR+

�
. (12)

The Liouville equation prescribes that the metric has constant negative curvature every-

where except at the location of the vertex operators. Vertex operators with real Liouville

momentum in the interval [0, 1
2
Q] create elliptic solutions, which are local cusps specified by

a patching function in the elliptic conjugacy class of the isometry group G. Vertex operators

with complex momenta of the form 1
2
Q+ iR+ create hyperbolic solutions, which are macro-

scopic holes in 2-D space identified with the spatial section of BTZ black hole geometries (as

shown in Fig. 1 and Fig. 3.). We may parametrize the Liouville momenta in this range as

↵± = 1
2
Q+ ip±, �± = p2± + 1

4
Q2. (13)

These relations, combined with Equations (7) -(8), specify a precise dictionary between the

classical data of the BTZ black hole and the quantum data of Liouville theory. For later

reference, we make note that the semiclassical regime p± � b � 1, the relations between

the Liouville momenta p± and the conjugacy class of the holonomies h± in (6) simplify to

r± = 4b(p+ ± p�), b2 = `/4 . (14)

Most of the above dictionary was known before the discovery of gauge/gravity duality. An

important insight from AdS/CFT is that the bulk theory can not be pure gravity. Gravity in

2+1 dimensions describes how massive localized excitations interact at long distances, but it

does not specify the hyperfine structure of the excitation spectrum of the bulk string theory.

The situation in the 1+1-D boundary theory is analogous. Liouville theory has a con-

tinuous spectrum of conformal dimensions, and is therefore capable of describing any set of

Virasoro representations. However, it does not prescribe the spectrum of some given unitary

CFT. Liouville theory is similar to a non-compact space with a continuous spectrum of wave

solutions; choosing a specific CFT realization of AdS3 is like putting the wave solutions in a

finite box, so that the spectrum becomes discrete and countable.
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Figure 7: The variables L↵, L�, L� and L⌧ are associated with four topologically distinct
loops each of which surrounds a hole and puncture (left) or two punctures (right).

In our case, there are two possible choices for the length coordinate: l↵ or l�. Each have

their own canonical conjugate ‘twist’ variable ⌧↵ and ⌧� defined such that

⌦WP = dl↵ ^ d⌧↵ = dl� ^ d⌧�
(49)

{l↵, ⌧↵}
WP

= {l�, ⌧�}
WP

= 1

In terms of the complex geometry, a shift in the twist variable ⌧↵ ! ⌧↵ + � acts by cutting

the 2D surface open along the corresponding cycle �↵, rotating one side by an angle �, and

gluing the two parts back again. The result that the length and twists are Darboux variables

was first shown by Wolpert [39]. As we will see shortly, in terms of our scattering problem,

⌧↵ is a direct measure of the time-di↵erence t0 � t1 between the would-be arrival time t0 of

particle A and the moment t1 when particle B is sent in.

2.3 Scattering matrix

We are finally ready to define and compute the gravitational scattering amplitude between

the outgoing particle A and the infalling particle B in the BTZ black hole background. First

we specifiy the initial and final states.

The initial state decribes three objects: a BTZ black hole of mass M , particle A that

travels just outside of its horizon, and particle B that is falling in from asymptotic infinity.

Particle A adds a finite amount of energy ↵ to the black hole mass: from a distance, the

geometry look like a single black hole of mass M↵ = M + ↵. We take as a basis of initial

states the eigenstates
��↵↵ of the total mass operator that measures M↵. So in particular

l̂↵
��↵↵ = l↵

��↵↵. (50)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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In our case, there are two possible choices for the length coordinate: l↵ or l�. Each have

their own canonical conjugate ‘twist’ variable ⌧↵ and ⌧� defined such that

⌦WP = dl↵ ^ d⌧↵ = dl� ^ d⌧�
(49)

{l↵, ⌧↵}
WP

= {l�, ⌧�}
WP

= 1

In terms of the complex geometry, a shift in the twist variable ⌧↵ ! ⌧↵ + � acts by cutting

the 2D surface open along the corresponding cycle �↵, rotating one side by an angle �, and

gluing the two parts back again. The result that the length and twists are Darboux variables

was first shown by Wolpert [39]. As we will see shortly, in terms of our scattering problem,

⌧↵ is a direct measure of the time-di↵erence t0 � t1 between the would-be arrival time t0 of

particle A and the moment t1 when particle B is sent in.

2.3 Scattering matrix

We are finally ready to define and compute the gravitational scattering amplitude between

the outgoing particle A and the infalling particle B in the BTZ black hole background. First

we specifiy the initial and final states.

The initial state decribes three objects: a BTZ black hole of mass M , particle A that

travels just outside of its horizon, and particle B that is falling in from asymptotic infinity.

Particle A adds a finite amount of energy ↵ to the black hole mass: from a distance, the

geometry look like a single black hole of mass M↵ = M + ↵. We take as a basis of initial

states the eigenstates
��↵↵ of the total mass operator that measures M↵. So in particular

l̂↵
��↵↵ = l↵

��↵↵. (50)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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In our case, there are two possible choices for the length coordinate: l↵ or l�. Each have

their own canonical conjugate ‘twist’ variable ⌧↵ and ⌧� defined such that

⌦WP = dl↵ ^ d⌧↵ = dl� ^ d⌧�
(49)

{l↵, ⌧↵}
WP

= {l�, ⌧�}
WP

= 1

In terms of the complex geometry, a shift in the twist variable ⌧↵ ! ⌧↵ + � acts by cutting

the 2D surface open along the corresponding cycle �↵, rotating one side by an angle �, and

gluing the two parts back again. The result that the length and twists are Darboux variables

was first shown by Wolpert [39]. As we will see shortly, in terms of our scattering problem,

⌧↵ is a direct measure of the time-di↵erence t0 � t1 between the would-be arrival time t0 of

particle A and the moment t1 when particle B is sent in.

2.3 Scattering matrix

We are finally ready to define and compute the gravitational scattering amplitude between

the outgoing particle A and the infalling particle B in the BTZ black hole background. First

we specifiy the initial and final states.

The initial state decribes three objects: a BTZ black hole of mass M , particle A that

travels just outside of its horizon, and particle B that is falling in from asymptotic infinity.

Particle A adds a finite amount of energy ↵ to the black hole mass: from a distance, the

geometry look like a single black hole of mass M↵ = M + ↵. We take as a basis of initial

states the eigenstates
��↵↵ of the total mass operator that measures M↵. So in particular

l̂↵
��↵↵ = l↵

��↵↵. (50)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
. (54)
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Particle B adds an additional amount of energy equal to ! � ↵. Again, we pick our basis

states to be eigenstates of the operator that measures the total energy M3 = M + !.

The final state also describes three objects: a BTZ black hole of mass M , particle B

that has fallen in, and particle A that has escaped to infinity. Particle B has added � to

the black hole mass, so from the outside, it looks like a black hole of mass M� = M + �.

We choose as our basis of final states the eigen states
���↵ of M�, satisfying

l̂�
���↵ = l�

���↵ . (51)

Particle A adds an additional amount of energy equal to !��. As before, we pick our basis

states to be eigen states of the total energy operator M3 = M + !.

The gravitational scattering matrix R↵� is now simply defined as the overlap between

an initial and a final basis state

R↵� =
⌦
�
��↵↵ (52)

From the previous discussion, we have learned that the horizon lengths l̂↵ and l̂� of the initial

and final black holes do not commute with each other. The scattering matrix R↵� should

thus be thought of as the unitary operator that implements the canonical transformation

between the Darboux coordinates (l↵, ⌧↵) associated with the initial state and the variables

(l�, ⌧�) associated with the final state. To construct this operator, we need to find the

explicit relation between the two sets of Darboux variables. Luckily, also this calculation

has already done for us at the semi-classical level in [19], and at the full quantum level

in [14, 34]. For now, we proceed with the semi-classical analysis. So we set

R↵� = exp
⇣
i
~ S↵�(l↵, l�)

⌘
. (53)

Here S↵�(l↵, l�) is the generating function of the canonical transformation between the initial

and final Darboux variables (l↵, ⌧↵) and (l�, ⌧�)

⌧↵ =
@S↵�

@l↵
, ⌧� = �@S↵�

@l�
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A simple calculation now gives that (55) takes the form

� = ! � ↵ + 2↵(! � ↵)e(t↵�tR). (57)

with tR ' log(cosh(⇡R/`)) + const. We see that, apart from a di↵erent o↵ set of the

time delay (which can’t be fixed by the arguments presented here), there’s a precise match

with equation (12). This is not surprising, since both calculations are based on the same

classical action. The lesson learned, however, is that our physical interpretation of eqn

(55) as describing the gravitational scattering process is confirmed, and that our schematic

semi-classical analysis of the introduction has now been substantially refined.

Together with eqn (55) and its time reversed partner, eqns (54) uniquely specify the

scattering phase S↵�. Integrating (54) still looks like a substantial algebraic task. Given the

above geometric formulation of the problem, however, it is not surprising that the solution

can be found in terms of a natural geometric quantity. As announced in the introduction,

it turns out that the S↵�(l↵, l�) can (up to a trivial phase) be identified with the volume of

a hyperbolic tetrahedron,10 with dihedral angles `i, with i = 1, 2, 3, 4,↵, �.

S↵� = Vol
⇣
T
h

1 2 ↵

3 4 �

i⌘
(58)

Here all geodesic lengths li’s are real, except for the two lengths associated with the conical

defects: l2 = i✓2 and l4 = i✓4. The formula for S↵� is given in the Appendix.

This concludes the technical part of this section. It is straightforward to verify that the

above formula indeed reduces to the solution to eqns (16) in the limiting regime (57). We

end with a few comments about the physical interpretation of this result.

• As we will see in section 4, the semi-classical scattering matrix R↵� lifts to a full

unitary operator acting on the Hilbert space H0,4 spanned by all the energy eigen states
��↵↵.

This unitarity property follows from the identification between the volume of hyperbolic

tetrahedra and the quantum 6j-symbols of Uq(sl(2,R)), the q-deformed universal enveloping

algebra of SL(2,R). We will describe this correspondence in more detail in the next sections,

where we will show that R↵� is identical to the braid operator acting on the Hilbert space

H0,4 spanned by the Virasoro conformal blocks on the four punctured sphere.

• An important output of the unitary condition is that it prescribes the form of the inner

product, or equivalently, the spectral density ⇢(↵) of the Hilbert space H0,4. Given the form

10 More accurately, S↵� denotes the excluded volume of the knot-compliment of a tetrahedron.
This supports the interpretation that S↵� is equal to the Einstein action evaluated on the classical
BTZ space-time, with two conical defects, that describes the scattering process.
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satisfy a braid relation: 

blocks. In this notation, the conformal bootstrap equation (75) takes a much simpler form

X
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In the graphical notation introduced above, we may represent this equation as
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The unitary bootstrap equation (78) seems much simpler, and thus a priori much less

instructive, than the original bootstrap equation (75). The two equations, however, are

completely equivalent.

We will refer to our definition  a(w, z) as the unitary normalization of 2D conformal

blocks. The factorization formula (77) is indeed suggestive of an interpretation of the blocks

 a(w, z) as orthonormal states in some suitable Hilbert space with inner product

⌦
 a

1

�� a
2

↵
= �a

1

a
2

. (80)

This interpretation of conformal blocks as Hilbert states will be a central theme of our story.

3.3 Fusion and braiding

In view of our proposed interpretation of the conformal blocks  a as orthonormal basis

states in some Hilbert space H, it is natural to look for unitary operators that act on H.

Two examples of such a unitary operators are the fusion matrix Fab and braid matrix, or R

matrix Rab. These implement the two basic crossing operations
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Fig. 2. Overview of our results. We study irrational 2D CFTs with a string theory dual on AdS3. If the CFT has large c, 
a sparse light spectrum [32] and only Virasoro symmetry, the AdS theory is expected to have two regimes in which 
gravity dominates: a high energy regime close to a black hole horizon, and a low energy regime at long distances. In the 
CFT, the dynamics in these regimes is dominated by the high entropy part of the spectrum, and the modular properties 
of conformal blocks are captured by Liouville theory. There exists a precise mathematical identification between 2 + 1
quantum gravity, defined as the quantization of its classical phase space, and Liouville modular geometry.

Virasoro conformal blocks span a linear vector space, which can be endowed with a Hilbert 
space structure and an inner product [13,14]. The spectral density of the Hilbert space is uniquely 
fixed by the requirement that modular and braid operations are implemented as unitary transfor-
mations. Crucially, as we will review in section 4, one finds that the level density for ! > c/12
matches with the Cardy formula [33].

The fusion and braiding properties of the Virasoro conformal blocks are captured by the cat-
egory of representations of the quantum group Uq(sl(2, R)) × Uq(sl(2, R)), the q-deformed 
universal enveloping algebra associated with the non-compact group SL(2, R) × SL(2, R) [13]. 
Here each SL(2, R) factor relates to a chiral sector of the CFT. In particular, the R-matrix which 
(as we will explain in section 5) governs the exchange algebra between local operators in the 
Lorentzian CFT [5], is given by the tensor product of the left and right Uq(sl(2, R)) R-matrix, 
which (up to a trivial phase-factor) equals the q-deformed 6j -symbol

R
Uq (sl2)

αβ = eπ i(!1+!3−!α−!β )
{

j1 j2 jα

j3 j4 jβ

}

q
, (19)

with:

q = eih̄ = eiπb2
, ℓMi = 2!i = 2ji(Q − ji). (20)

Here ji ∈ [0, 12Q] ∪ 1
2Q + iR+ labels the representation of Uq(sl(2, R)), and Q, b, h̄ and ℓ are 

all related and determined by the central charge c via

c = 1 + 6Q2, Q = b + b−1, h̄ = 4π

ℓ
, c = 3ℓ

2
. (21)

Explicit formulas for the quantum 6j -symbol are known [13] but complicated (see Appendix A) 
and therefore perhaps not very illuminating to non-experts. However, their geometrical meaning 
becomes more apparent in the semi-classical limit h̄ → 0, i.e. the limit of large central charge c. 
In the dual theory, this is the large radius limit of AdS.

To exhibit the semi-classical behavior of the R-matrix, we write

Ponsot-­‐Teschner
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6j-symbolintroduction, it has a concrete geometrical interpretation as the quantum volume of a hy-

perbolic tetrahedron. Using the limiting behavior of the quantum dilogarithm function for

small b, one can indeed recognize that⇢
j1 j2 j↵
j3 j4 j�

�
q

' exp
n i

2⇡b2
Vol

�
T
�o

(109)

where T is the hyperbolic tetrahedron with six dihedral angles specified by ⌫i = 2⇡b2ji, see

eqn (145). The details of this calculation are found in [20].

The exact match between (58) and (109) establishes that the modular matrices of Liou-

ville CFT provide the exact quantum solution to the 2+1-D gravitational scattering problem

described in sections 1 and 2, and vice versa. In the next section, we will show that the

modular martices dictate the form of the exchange algebra between local vertex operators

in the Lorentzian CFT. This will complete the identification.

4.3 Verlinde operators as geodesic lengths

The match between Virasoro CFT and gravitational scattering can be made more evident

by considering the Verlinde loop operators [2] of Liouville CFT. In rational CFT, Verlinde

loop operators are hermitian operators associated with closed loops � that act on the space

of conformal blocks. For a given loop �, they generate the commutative and associative

algebra, isomorphic to the fusion algebra of the CFT. The Verlinde operators for two dif-

ferent loops �1 and �2 commute only if the loops don’t intersect. A basis of conformal

blocks is provided by the simultaneous eigenvectors of a maximally commuting set of Ver-

linde operators, associated to all dividing cycles of a pant decomposition of the 2D surface.

The modular transformations represent canonical transformations between the eigenbases

of di↵erent maximal sets of commuting loop operators.

There exist analogous loop operators in Virasoro CFT [9, 42]. They correspond to a

quantized version of the operators L(�) = 2 cosh(l(�)/2) that measure the geodesic length

of the corresponding loop. The idea put forward in [9,42] is that Virasoro modular geometry

is organized by the algebra of these quantized loop operators, in the same manner that RCFT

is codified by the Verlinde loop operators. Their relevance to our story is that they supply

the inverse map from Virasoro CFT to the quantum geometry employed in section 2.

The simplest loop operator makes use of the degenerate primary field �2,1. It satisfies

(L2
�1 + b2L�2)

���2,1

↵
= 0 (110)
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