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• A well defined, UV complete, background-independent description 
of a gravitational theory
• Gravitational theory is described by an ordinary conformal field theory.

• Naturally (necessarily?) unified description of gravity and matter
• CFT spectrum contains operators that describe both matter and coupling to 

gravity.

• Most profound feature of quantum gravity is built-in: holographic
• The CFT lives in one fewer dimension than the gravity dual
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It has made many of our vague, but important, ideas about QG rigorous:

• Black hole thermodynamics:
• Black holes are thermal states in the dual CFT and have a real temperature

• Black hole entropy is just the degeneracy of states at large conformal dimension
in the CFT (in 2D this is just the Cardy growth of states)

• Black hole evaporation is a unitary process

• Area and entropy:
• More generally, certain areas in spacetime related to entanglement entropy of 

regions in the CFT (Hubeny-Rangamani-Ryu-Takayanagi)

• String theory… or not:
• String theory is a well-defined, UV complete, background-ind. theory.

• But gauge/gravity duality is more general: dual theory need not be a string 
theory. Expect consistent theories of gravity from CFTs that have no string theory 
description.
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When it comes to many deep and important questions about QG….

How do we describe the interior of a black hole?

How does gravitational geometry emerge from the CFT?

…  what has gauge/gravity duality taught us?

Not nearly as much as we would have hoped by now!

Despite being gifted with a fantastic, UV-complete theory of gravity…

…we are still much better at understanding perturbative, 
background-dependent questions in low-energy effective field 
theory.

Problem: Less that we can’t compute in the CFT, more that we don’t 
know what to ask.
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To make progress, we must think more carefully about how to do 
non-perturbative quantum gravity within gauge/gravity duality:

Would like to know:

1. What lessons and tools can ‘string theorists’ borrow from other 
communities that have also thought hard about these problems?

2. Can experts of other approaches make progress by working within 
the framework of gauge/gravity duality?

This talk:
Some work that leans in this direction…
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Only particular class of CFTs expected to have a ‘good’ gravitational dual:

What are these CFTs?

A ‘good’ CFT must have:

1. A large central charge:

2. Correlators that factorize:

1. A spectrum of conformal dimensions that is sparse:

Then this CFT is dual to a theory of gravity whose low-energy energy 
description is gravity plus effective field theory of field 𝜙 dual to 𝒪.

Low-energy fields

𝑳

𝒍𝒑
≫ 𝟏

Perturbative effective 
fields in bulk

Black hole states

[cf. Heemskerk, Penedones, Polchinski, JS]
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If we consider some state,         , in the CFT

it also describes some geometry in the gravitational theory.

When          is the CFT vacuum, the bulk geometry is anti-de Sitter (AdS) space.

time

CFT

time

Gravitational Theory

UV
IR



Different Languages



Different Languages

Standard object to work with in the gauge theory are local operators



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 

Standard object to work with in gravity is a local operator in the bulk.



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 

Standard object to work with in gravity is a local operator in the bulk.

• Gravity has no local operators (diff-invariant)



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 

Standard object to work with in gravity is a local operator in the bulk.

• Gravity has no local operators (diff-invariant)

• Quasi-local operator is complicated to specify 
in terms of boundary conditions on the cylinder.



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 

Standard object to work with in gravity is a local operator in the bulk.

• Gravity has no local operators (diff-invariant)

• Quasi-local operator is complicated to specify 
in terms of boundary conditions on the cylinder.



Different Languages

Standard object to work with in the gauge theory are local operators

• These are UV operators that don’t naturally
see far into the bulk. 

Standard object to work with in gravity is a local operator in the bulk.

• Gravity has no local operators (diff-invariant)

• Quasi-local operator is complicated to specify 
in terms of boundary conditions on the cylinder.



What has locality done for us lately?
[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

hard integrals …

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

hard integrals …
CFT:

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

hard integrals …
CFT:

Dynamical Parameters

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

hard integrals …
CFT:

Dynamical Parameters Conformal Kinematics: All integrals hidden here!

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]



What has locality done for us lately?

Using these non-invariant effective observables is meant to be most 
straight-forward way to do bulk calculations:

hard integrals …
CFT:

Dynamical Parameters Conformal Kinematics: All integrals hidden here!

How do we 
compare?

Gravity:

[cf. Hijano, Kraus,
Perlmutter, Snively]
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Being naïve hasn’t really made life simple…

… is being a bit more sophisticated worth the effort? 

Aim of this talk: YES.

Questions:

1. What is an improved gauge/gravity dictionary that is gauge-invariant on one 
side and manifestly diff-invariant on the other?

2. Can we find a better connection to the natural CFT variables that make the 
OPE so simple?

Answer:

Stereoscopic Dictionary:

Surface Operators in AdS
(Non-local, diff-invariant) ↔

Partial Waves of the OPE
(building blocks of the OPE)
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Lesson from gauge theories

You might be familiar with a similar story:

We typically formulate a gauge theory in terms of a gauge potential            
and the corresponding field strength        , where the equation of motion is 

But the inclusion of the gauge field adds redundancy to the description. 

However, we do have a complete set of gauge-invariant observables

Can we express the dynamics of the theory in terms of these variables 
alone? (That is, can we write an equivalent EOM in the space of loops?)
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How do we insert the equation of motion into a Wilson loop?

• Can also define a field space Laplacian,       , and view Wilson loop as a 
‘loop transform’ W of the gauge field. At large N:

[Migdal, Makeenko; 
Polyakov; Halpern, 
Makeenko;…]

Loop Equation:                                  (Classically)

Intertwining Operators
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The loop equations are analogous to the organization of gravitational physics 
we have been looking for.

We want to know:

1. What is the right loop space for AdS/CFT?

2. What are the loop operators and their loop equations for bulk physics?

3. What do the loop equations and loop operators look like in the gauge 
theory?
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Loop Space = ?
We need to understand: what is the most natural loop/phase space for 
gravitational physics in AdS/CFT?

Thankfully an example of the type of construction we’re searching for has already 
been found: Ryu-Takayanagi Proposal

• The Ryu-Takayanagi (RT/HRT) proposal connects:

• Entanglement entropy of regions in the CFT gives non-local, non-perturbative
probe of spacetime geometry.

Might think of spacetime as geometrization of this entanglement data!

The entanglement entropy of a 
region A on the boundary.

𝑨

The area of a minimal surface S in 
the gravitational dual

S
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Loop Space = ?
Let’s use these non-local entanglement probes to formulate our loop space:

• One might define the relevant loop space to be all possible such surfaces (ie. 
all possible such boundary regions.)

• Enormously redundant: infinite-dimensional space

• Define our loop space to be the space of minimal surfaces with spherical 
boundary conditions (in any frame). 
• We will give it a new name: Kinematic Space.

S
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What does kinematic space look like? 

• Consider an ordered pair of timelike separated points on the boundary:

Boundary Bulk Kinematic Space

G
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• For the AdS vacuum, the metric on K is uniquely fixed by isometries of the 
geometry:
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𝝌: Center
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Kinematic Fields

We have a ‘loop space’, but still need the right ‘Wilson Loops’

• We can think of their areas as integrating the unit operator over the minimal 
surface:

• A natural generalization then is:

• This bulk surface/geodesic operator is a non-local and diff-invariant bulk 
probe. 

Radon Transform:  𝑹 𝝓 ≔ ෪𝝓
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Radon Transform

The Radon transform has nice properties under isometries of the geometry:

__ 𝑓(𝑥)

_ 𝑓(𝑥)

__

_

𝐾
𝑀

Intertwining Operators

_ 𝑓(𝑥)_

𝑓(𝑥)
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Loop Equations in kinematic space

Intertwinement allows us to rewrite the dynamics of the gravitational 
theory in terms of dynamics on kinematic space:

Free Scalar Field:

Loop EOM for free scalar
= Kinematic Free scalar EOM
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The Operator Product Expansion
We haven’t succeeded unless these appear naturally in the dual gauge 
theory:

• Consider a quasi-primary operator              of dimensions      . We can 
expand the product of two such operators using a local basis of operators:

• Let us introduce a more compact notation for this expansion

• We will call                    the ‘OPE Block’

Dynamical Parameters Conformal Kinematics

O𝑖(0)

O𝑖 𝑥
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Gravity CFT

EOM

BCs

It is the same wave equation obeyed by a bulk geodesic operator dual to 
the operator       :

OPE Blocks as Kinematic Fields

‘John’s Equations’ ‘Spin’Constraint

The Kinematic Dictionary:

[cf. de Boer, Haehl, Heller, Myers; da 
Cunha, Guica] 
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• Define Radon Transforms:

and prove an analogous intertwining relation:

• We find the equivalent Kinematic EOM:

Cf. [de Boer, Heller, Myers, Neiman]  
[Nozaki, Numasawa, Prudenziati, 
Takayanagi], [Bhattacharya, Takayanagi]
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Can we do carry out a similar procedure for the metric itself?

• We have the linearized EOM:

• Define Radon Transforms:

and prove an analogous intertwining relation:

• We find the equivalent Kinematic EOM:

• CFT derivation: follows naturally from the Casimir equation for the stress tensor.

Cf. [de Boer, Heller, Myers, Neiman]  
[Nozaki, Numasawa, Prudenziati, 
Takayanagi], [Bhattacharya, Takayanagi]

Linearized Einstein Equations
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Background Independence
It’s hard to specify quasi-local operators in a background-independent 
manner.

In a fixed background: In some new state:

Geodesic operator simply defined 
in terms of boundary conditions 
in any state—background independent



Beyond the vacuum



Beyond the vacuum
Can the same operator describe geodesics in different states?



Beyond the vacuum
Can the same operator describe geodesics in different states?

The interacting block classicalizes and becomes a simple functional of the expectation 
values at leading order:



Beyond the vacuum
Can the same operator describe geodesics in different states?

The interacting block classicalizes and becomes a simple functional of the expectation 
values at leading order:



Beyond the vacuum
Can the same operator describe geodesics in different states?

The interacting block classicalizes and becomes a simple functional of the expectation 
values at leading order:



Beyond the vacuum
Can the same operator describe geodesics in different states?

The interacting block classicalizes and becomes a simple functional of the expectation 
values at leading order:



Beyond the vacuum
Can the same operator describe geodesics in different states?

The interacting block classicalizes and becomes a simple functional of the expectation 
values at leading order:



Beyond the vacuum
Can the same operator describe ge → resummation of perturbative expansion.

The interacting block classicalizes and becomes a simple functional of the expectation 
values at leading order:

Resummation of operators in OPE → resummation of perturbative expansion.
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Summary

Gauge/gravity duality is a powerful, UV complete model for testing ideas 
about quantum gravity.

But the difficult (and most interesting!) problems in QG still require new 
tools to make progress. 

We found a set of non-local, diff/gauge-invariant building blocks both in the 
bulk and on the boundary to build a ‘better’ holographic dictionary.

• On the boundary: OPE blocks

• In the bulk: Geodesic/Surface Operators

The simple kinematic correspondence can be extended to describe a fully-
interacting quasi-local theory and give background-independent operators.

Can we do even better by borrowing tools/ideas/people from LQG? 


