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Quantum gravity

•Non perturbative Renormalisation 

•Discretisation of quantum system needs the breaking of a big system 
into subsystem (nodes) and the understanding of the nature of their 
relationship (edges)

One way to understand the quantum nature of a complex system like 
Gauge theory or gravity is to break the system into its components.
To introduce a scale and then renormalise

Renormalisation is about the nature of quantum 
degree of freedom (dof) across different separation scale .
Can we reconcile this with gauge invariance ?  Yes
With general covariance ?  We don’t know.

Lattice gauge theory

Electromagnetism has a more subtle structure than a scalar.

For each link, let ' be the phase picked
up by a hopping electron:

' 2 C, |'| = 1.

Let E be the electric field,

E = n e, n 2 Z.

They are canonically conjugate

[', E] = '.

' E

Each link of the lattice is a quantum system:
a free particle on a circle of radius 1/e.
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Quantum gravityBuilding blocks of space

Space is a network of entangled subsystems.

[Rovelli & Smolin] [Vidal] [Pastawski, Yoshida, Harlow, & Preskill]

What are the subsystems for gravity?

How are they entangled?

43

What are the symmetries governing the gluing of these subsystems?

What are the subsystems for gravity?

What is the nature of entanglement between subsystems?



Local subsystems
•Can we can define the notion of local subsystem in Gravity ? 
 That is given a Hilbert space H can we decompose it in terms of 
Hilbert spaces associated with subregions.

• For a scalar field theory or spin system 
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃ � H⌃ ⌦H⌃̄, @⌃ = S. (2)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space Ĥ⌃ = H⌃ ⌦H
S

� H⌃ that contains new
and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic

Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance

How come they are not pure gauge?

1

Locality insures that operators associated with different factors 
commute
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I. INTRODUCTION

Entanglement plays an increasingly prominent role in fundamental physics. It has long been recog-
nized that the entanglement naturally present in the vacuum could account for the Bekenstein-Hawking
entropy of black holes [1–3] (see [4] for a review). In fact it is conjectured that the scaling of entan-
glement entropy with area is a universal feature of near-vacuum states in quantum gravity [5]. More
ambitiously, it has been proposed that the geometry of spacetime [6] and its topology [7] may emerge
from entanglement. Moreover, if the Bekenstein-Hawking entropy really is entanglement entropy, then
all regions of space should possess an entropy and therefore be subject to the laws of thermodynam-
ics. Applying the laws of thermodynamics to local Rindler horizons [8], or to small spherical regions of
spacetime [9], one can derive the Einstein equation as an equation of state. Together these results point
toward idea that entanglement, an essentially quantum phenomenon, is deeply connected to classical
spacetime geometry and its dynamics.

Despite the central role that entanglement is conjectured to play in quantum gravity, there is so far
no sharp definition of entanglement between regions of space that would apply in quantum gravity. In
order to define entanglement entropy, we require that for any Cauchy surface divided into two disjoint
regions Σ and Σ, there is a tensor product factorization of the total Hilbert space

H = HΣ ⊗HΣ. (1.1)

We can then define for any density matrix ρ, a reduced density matrix ρΣ := TrΣρ and an entanglement
entropy

S(ρΣ) = −TrρΣ log ρΣ. (1.2)

We do not expect the Hilbert space of quantum gravity to be naturally equipped with a tensor product
structure such as (1.1). An essential property of the tensor product is that operators within the
different factors commute: [A⊗ I, I ⊗B] = 0 for any operators A and B. There are strong arguments
that such locally supported commuting operators simply cannot exist in quantum gravity [10, 11].
The basic obstruction is diffeomorphism invariance: physical operators in quantum gravity should be
diffeomorphism invariant, but the action of a diffeomorphism is to permute the points of spacetime.
Thus an invariant operator with support at any spacetime point must also have support on every other
spacetime point. Whatever notion of local subsystems survives in quantum gravity must clearly be a
generalization of (1.1). The goal of this paper is to unravel the mechanism behind such a generalisation
and the basis for its construction.

The absence of tensor factorisation is expected for any theory with gauge symmetry. In a gauge
theory the initial data must obey constraints, which take the form of differential equations on each
time slice. In Yang-Mills theory the constraint is Gauss’ law, and in gravity it is the diffeomorphism
constraints (often further divided into a spatial diffeomorphism constraint and a timelike Hamiltonian
constraint). Because of these constraint equations, initial data in the two regions Σ and Σ cannot be
specified independently. This fact is reflected at the quantum level by the failure of the factorisation
(1.1).

Before proceeding to describe our construction, we discuss some alternative perspectives on the
problem of entanglement entropy and localized subsystems in field theory. The most straightforward
way to define entanglement entropy for a field theory is to regularize on a lattice. There each site carries
a Hilbert space, which could be for example that of a harmonic oscillator, or a finite-dimensional system.
Then the Hilbert space of each region is simply the tensor product of all the sites inside the region,
and the factorisation structure (1.1) is manifest. One can therefore define entanglement entropy for
any quantum field theory that arises as a continuum limit of such a lattice system. Although the
entanglement entropy defined in this way is divergent and depends on the precise lattice realization of

No longer true in gauge and gravity!

Technically this is expressed as the triviality of the center : 
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0
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b
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⌃ = C (4)
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Electromagnetism

In a gauge theory, the degrees of freedom are non-local.

Electric field lines can only
end on charges:

r · E = ⇢.

A constraint equation.

How do we divide these non-local degrees of freedom?

16

Local subsystems
In gauge and gravity states have to satisfy constraints equations: 
Gauss Law or                                                               
Hamiltonian and diffeomorphism constraints.
These are elliptic constraints that  implies that                     
initial data cannot be specified independently.                                    
Fundamental non locality of gauge invariant observables 
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact
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How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space Ĥ⌃ = H⌃ ⌦H
S

� H⌃ that contains new
and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic

Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance

1

We have that          

but                                       is only a subset. 
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1

What are we missing?

Gravity

Gravity is a theory with a local symmetry, general covariance.

This symmetry leads to constraint equations:
equations of motion with no time derivatives.

The constraints are responsible
for the force of gravity:

r2� = 4⇡G ⇢.

Regions of space are not independent subsystems.

We can treat them the same way as in electrodynamics.

31

More precisely if we denote by         the Hilbert space of gauge 
invariant states obtained by acting on the vacua by gauge invariant 
operator supported on    

Boundary dof in gravity, gauge and symmetry

June 19, 2016

1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)
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subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

H⌃[⌃̄ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄, @⌃ = S. (5)

[O⌃, O⌃̄] = 0 (6)

eipL/~ (7)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (8)

P⌃ (9)

that contains new and physical degrees of freedom associated with the presence of the bound-
ary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.

1



Local subsystems

•We are missing gauge invariant observables that are not 
entirely supported within a region.

•Open end of  Wilson lines in gauge theory
•metric degree of freedom that encodes the location of 
the separation surface in gravity

•The main idea is to understand that the Hilbert space 
associated with    needs to be extended 

•We have to give up the commutativity of observables 
associated with different regions, non-locality is built-in.
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space Ĥ⌃ = H⌃ ⌦H
S

� H⌃ that contains new
and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic

Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ dim(H⌃) =
Vol⌦(⌃)

(2⇡~)d (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

H⌃[⌃̄ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄, @⌃ = S. (5)

[O⌃, O⌃̄] = 0 (6)

eipL/~ (7)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (8)

P⌃ (9)

that contains new and physical degrees of freedom associated with the presence of the bound-
ary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?

1



Extended Hilbert space
•Given a separating surface  
•Extended Hilbert space 
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

⌃ ⌃̄ (2)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃ � H⌃ ⌦H⌃̄, @⌃ = S. (3)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space Ĥ⌃ = H⌃ ⌦H
S

� H⌃ that contains new
and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic

Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance

How come they are not pure gauge?

1
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory

1
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory

1

New degrees of freedom associated
with the boundary 
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory

1

They are physical, they are not pure gauge: 
possess a non-zero gauge invariant charge

They are a necessity in order to preserve gauge invariance 
and there is a unique minimal way to introduce them.
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory

1

eg: edge state in 
Quantum Hall.

But now we have too many: 
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

H⌃[⌃̄ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄, @⌃ = S. (5)

[O⌃, O⌃̄] = 0 (6)

eipL/~ (7)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (8)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
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Boundary symmetry group

•Key result : The boundary degrees of freedom form a 
representation of a boundary symmetry group 
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space
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that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory

1

Boundary dof in gravity, gauge and symmetry

June 14, 2016

1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space
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We can devise a fusion product that allow us to reconstruct the 
full Hilbert space from the ones associated  with subregions 

• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic

Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance

How come they are not pure gauge?
Now that we have extended the Hilbert space we get another problem we still don’t have

the equality, Now the hilbert space is too big :(

H⌃ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄ (8)

They key idea is that not only these degrees of freedom transform non trivially under gauge
transformations X ! �X quite remarkably we have found that they also carry a representation
of a boundary symmetry group G

S

X ! �X. And � 6= �!

G
S

: H
S

! H
S

(9)

Now we can define the full Hilbert space to be singlets under G
S

H⌃[⌃̄ ⇢ Ĥ⌃ ⌦
GS Ĥ⌃̄ (10)

The tensor product is promoted to an entangling product depending on the boundary symme-
tries. (Full proof only in Gauge theory WIP for gravity).

This mecahnism is the reason why these degrees of freedom are non trivial. We introduce a
boundary we introduce to copy of the extension H

S

and H
S̄

. The singlet condition reduces to
one, but do not kill these dof. They are physical :)

2 Hair BH and symmetries

Do BH have no hair ? or an infinite number of classical Hair?
This question is the exact analog of :
Do particles have no momenta ? or an infinite number of momenta states?

What are these states: The boundary dof. This is a confusion of the highest order since
it means that we do not know how to count!. we confuse 0 with 1. It means that we don
ounderstand something fundamental and important about gravity.

This is not a purely quantum problem! Classically N = V number of state = phase space
volume. So the classical question is wether there are additional dof or not that enter the
symplectic structures in the presence of the boundary.

• In the particle case we know the answer. The mathematical fact is that the only observable
independent quantity associated with a particle is its mass. WE can always go to the com mass
frame. That doesn’t mean that momenta is phyically irrelevant. Momenta s a physical observer
dependent quantity. M is a casimir momenta labels the states of the representation which is
infinite dimensional.
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This products entangles physical states across regions. Physical 
states are singlets, one out of two boundary copies survives
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Works both for gauge theories and gravity,
How do we implemented this exactly?

L.F, Donnelly
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Extended Hilbert space

How do we divide the degrees of
freedom between two regions?

We split each boundary link in half,
putting half in A and half in B.

Define the extended Hilbert space:
[WD 2011]

HA =
O
e2A

He

,O
v2A

Gv .

A B

Where we impose Gauss’s law at all interior vertices v.

HA contains surface degrees of freedom:
(', E?) at all points on the boundary.
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Boundary dof in gravity, gauge and symmetry

June 14, 2016

1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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In gauge theory we can put regularize the theory in a gauge invariant 
manner by putting it on a lattice and we can identify what are the 
boundary degree of freedom: Non abelian Aharonov-Bohm phases

Surface degree of freedom 
at every point in the boundary.

As we will see there is a minimal and unique way of doing this.
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Now we can define the full Hilbert space to be singlets under G
S
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The tensor product is promoted to an entangling product depending on the boundary symme-
tries. (Full proof only in Gauge theory WIP for gravity).

This mecahnism is the reason why these degrees of freedom are non trivial. We introduce a
boundary we introduce to copy of the extension H

S

and H
S̄

. The singlet condition reduces to
one, but do not kill these dof. They are physical :)

2 Hair BH and symmetries

Do BH have no hair ? or an infinite number of classical Hair?
This question is the exact analog of :
Do particles have no momenta ? or an infinite number of momenta states?

What are these states: The boundary dof. This is a confusion of the highest order since
it means that we do not know how to count!. we confuse 0 with 1. It means that we don
ounderstand something fundamental and important about gravity.

This is not a purely quantum problem! Classically N = V number of state = phase space
volume. So the classical question is wether there are additional dof or not that enter the
symplectic structures in the presence of the boundary.

• In the particle case we know the answer. The mathematical fact is that the only observable
independent quantity associated with a particle is its mass. WE can always go to the com mass
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As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0
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Boundary charge Boundary phase

Charge algebra Phases carry local charge
= dressing modes

These dof are necessary in order to account for the covariant 
entanglement entropy.  [Donelly,Wall]



• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic

Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance

How come they are not pure gauge?
Now that we have extended the Hilbert space we get another problem we still don’t have

the equality, Now the hilbert space is too big :(

H⌃ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄ (8)

They key idea is that not only these degrees of freedom transform non trivially under gauge
transformations X ! �X quite remarkably we have found that they also carry a representation
of a boundary symmetry group G
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Now we can define the full Hilbert space to be singlets under G
S

H⌃[⌃̄ = Ĥ⌃ ⌦
GS Ĥ⌃̄ (10)

The tensor product is promoted to an entangling product depending on the boundary symme-
tries. (Full proof only in Gauge theory WIP for gravity).

This mecahnism is the reason why these degrees of freedom are non trivial. We introduce a
boundary we introduce to copy of the extension H

S

and H
S̄

. The singlet condition reduces to
one, but do not kill these dof. They are physical :)

2 Hair BH and symmetries

Do BH have no hair ? or an infinite number of classical Hair?
This question is the exact analog of :
Do particles have no momenta ? or an infinite number of momenta states?

What are these states: The boundary dof. This is a confusion of the highest order since
it means that we do not know how to count!. we confuse 0 with 1. It means that we don
ounderstand something fundamental and important about gravity.

This is not a purely quantum problem! Classically N = V number of state = phase space
volume. So the classical question is wether there are additional dof or not that enter the
symplectic structures in the presence of the boundary.

• In the particle case we know the answer. The mathematical fact is that the only observable
independent quantity associated with a particle is its mass. WE can always go to the com mass
frame. That doesn’t mean that momenta is phyically irrelevant. Momenta s a physical observer
dependent quantity. M is a casimir momenta labels the states of the representation which is
infinite dimensional.
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Boundary symmetry group

Boundary dof in gravity, gauge and symmetry

June 14, 2016

1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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at every point in the boundary on a lattice.

•After all a discretization is a decomposition into elementary 
subsystems so a covariant discretization is the answer we are looking 
for . Can we derive it ?

As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
wher we have seen such modes, Quantum Hall e↵ects edge states etc...) There is the e↵ect is
dramatic
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Summary: they are new physical degrees of freedom associated with the presence

of a boundary. They respect gauge invariance

How come they are not pure gauge?
Now that we have extended the Hilbert space we get another problem we still don’t have

the equality, Now the hilbert space is too big :(

H⌃ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄ (10)

They key idea is that not only these degrees of freedom transform non trivially under gauge
transformations X ! �X quite remarkably we have found that they also carry a representation
of a boundary symmetry group G

S

X ! �X. And � 6= �!

G
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(11)

Now we can define the full Hilbert space to be singlets under G
S

H⌃[⌃̄ = Ĥ⌃ ⌦
GS Ĥ⌃̄ (12)

(| i, | ̄i) ' (g| i, g| ̄i) (13)

The tensor product is promoted to an entangling product depending on the boundary symme-
tries. (Full proof only in Gauge theory WIP for gravity).

This mecahnism is the reason why these degrees of freedom are non trivial. We introduce a
boundary we introduce to copy of the extension H

S

and H
S̄

. The singlet condition reduces to
one, but do not kill these dof. They are physical :)

2 Hair BH and symmetries

Do BH have no hair ? or an infinite number of classical Hair?
This question is the exact analog of :
Do particles have no momenta ? or an infinite number of momenta states?

What are these states: The boundary dof. This is a confusion of the highest order since
it means that we do not know how to count!. we confuse 0 with 1. It means that we don
ounderstand something fundamental and important about gravity.

This is not a purely quantum problem! Classically N = V number of state = phase space
volume. So the classical question is wether there are additional dof or not that enter the
symplectic structures in the presence of the boundary.

• In the particle case we know the answer. The mathematical fact is that the only observable
independent quantity associated with a particle is its mass. WE can always go to the com mass
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Is there a derivation in the continuum ?
•Discretisation puzzle: In QED We know 
that (A,E) are conjugate variables and that

•The electric field algebra is non-commutative when discretised? 
Why? Is it a discretization artefact? Can it be derived from the 
continuum? What does it mean? What is the gravitational analog?



Extended phase space
In gravity we cannot construct        yet, but we can access its semi-
classical analog:
The Phase space of gauge and gravity 

•We are going to show that it has to be extended in the presence 

codimension 2 boundary
• That there exist non vanishing charges of symmetry

• That the Full Phase space is given by  

The same aply to BH. The only observer indepependent quantity we can assign to a AF
spactime is the mass and spin like a particle. But that doesnt mean that there are no degree of
freedom which are observer dependent.

In fact we’ll show that the
• Basic confusion between Gauge and symmetry. Symmetry is usually defined as isometry

preserving a background structure. Here we will use the more physicak definition that sym-
metries are associated with the action Noether charges. Were these Noether charges do not
vanish.

• gravity is locality holographic ( explain how this di↵er from Ads/CFT). Not only we
have boundary degrees of freedom, but ( a large subset of) (all?) physical observables somehow
localise to the boundary. Conserved charge can all be localise on codim 2 surfaces. Very di↵erent
from usual FT where dof localises on codim 1 surfaces!

P̂⌃ = P⌃ ⇥ P
S

(12)

P̂⌃[⌃̄ = P̂⌃ ⇥
GS P̂⌃̄ (13)

3 Quasi-Local energy of embedded spheres

Given a Lagrangian L(�) and volume form ✏. The equations of motion E(�) = 0 and symplectic
structure ⇥ appear in the variation of L:

�(L✏) = d⇥(�, ��)� E(�)��. (14)

where ⇥(�, ��) = ✏
a

✓a(�, ��) is the symplectic potential current and ✏
a

:= ı
@a✏. And we have

identities like
✏ = dxa ^ ✏

a

= (dxa ^ dxb) ^ ✏
ba

, ✏a = ⇤dxa, ✏
a

= ı
@a✏ (15)

The canonical energy associated with a vector V is given by the integral of the Noether current

H⌃[V ] :=

Z

⌃
Ja[V ]✏

a

, Ja[V ] := (✓a(�,L
V

�)� V aL) (16)

In the abscence of gravity this current is conserved only if V is a killing vector preserving the
background metric L

V

g
ab

. From the definition of the current and the Noether identity we see
that the non conservation of energy is measured by the background metric variation: Suppose
that ⌃0,⌃1 are two slices possessing the same bounbounding a region of spacetime @M = ⌃0[⌃̄1

where the conjugate reverse the orientation. Accordingly we have that

H⌃1 [V ]�H⌃0 [V ] = �
Z

M

(L
V

g
ab

)
�S

�g
ab

= �
Z

M

✏(r
a

V
b

)T ab = �
Z

@M

✏
a

T abV
b

. (17)

For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
�T abV

b

. and the canonical energy can be written as

Ja

M

[V ] = �T abV
b

, H(V ) = �
Z

⌃
✏
a

T abV
b

. (18)
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In the abscence of gravity this current is conserved only if V is a killing vector preserving the
background metric L
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. From the definition of the current and the Noether identity we see
that the non conservation of energy is measured by the background metric variation: Suppose
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For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
�T abV

b

. and the canonical energy can be written as

Ja

M

[V ] = �T abV
b

, H(V ) = �
Z

⌃
✏
a

T abV
b

. (18)

3

Hamiltonian reduction

Boundary dof in gravity, gauge and symmetry

June 14, 2016

1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory
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Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (6)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
As we will see there is a minimal and unique way of doing this.
• We know they are physical because they possess non zero charge that generates no trivial
symmetrie transformations. We have physical system (low dimensional topological Field theory

1

Boundary dof in gravity, gauge and symmetry

June 14, 2016

1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

[O⌃, O⌃̄] = 0 (5)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact
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[O⌃, O⌃̄] = 0 (6)

eipL/~ (7)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (8)

that contains new and physical degrees of freedom associated with the presence of the boundary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.
Extension analogous to stuckelber mechanism. Excpet that in the presence of a broken gauge
we get analogs of Goldstone modes These are the physical modes we are looking for.
•We find them by demanding that they restore gauge invariance in the presence of the boundary.
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The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (8)

P⌃ (9)

that contains new and physical degrees of freedom associated with the presence of the bound-
ary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
• They represent observer degrees of freedom, which are necessary to even define the problem.

1

•These boundary charges are new type of gauge-invariant 
observables that represents the soft modes when S = infinity.
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0

[Ea
e , E

b
e0 ] = i�ee0C

ab
cE

c
e. (1)

A⌃[⌃̄ � A⌃ _A⌃̄ (2)

(E?,') (3)

Z⌃ = A⌃ \A0
⌃ = C (4)

(', Xa) (5)

QS(V ) (6)
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Phase space
The key structure is the symplectic potential

Phase space

The classical analog of a Hilbert space is a phase space.

The key structure is the
symplectic potential

⇥ = p �q .

q

p

2⇡~

⇥ encodes all the structure of classical mechanics:

• Relates symmetries and conserved charges.

• Tells us what is physical and what is gauge.

• Determines the Poisson brackets (⇠ commutators).

• Gives the density of states in phase space.
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                is a one form on field space. It encodes all of the the 
structure of classical mechanics and key elements of quantum 
mechanics
•It relates symmetry to conserved charges
•It tells us what is physical and what is gauge
•It determines the Poisson bracket  ( Commutator)
•It gives the density of states in Phases spaces
•It determines the Aharonov-Bohm phases

The same aply to BH. The only observer indepependent quantity we can assign to a AF
spactime is the mass and spin like a particle. But that doesnt mean that there are no degree of
freedom which are observer dependent.

In fact we’ll show that the
• Basic confusion between Gauge and symmetry. Symmetry is usually defined as isometry

preserving a background structure. Here we will use the more physicak definition that sym-
metries are associated with the action Noether charges. Were these Noether charges do not
vanish.

• gravity is locality holographic ( explain how this di↵er from Ads/CFT). Not only we
have boundary degrees of freedom, but ( a large subset of) (all?) physical observables somehow
localise to the boundary. Conserved charge can all be localise on codim 2 surfaces. Very di↵erent
from usual FT where dof localises on codim 1 surfaces!

P̂⌃ = P⌃ ⇥ P
S

(12)

P̂⌃[⌃̄ = P̂⌃ ⇥
GS P̂⌃̄ (13)

{Q
S

(V ), ·} = �
V

(14)

3 Quasi-Local energy of embedded spheres

Given a Lagrangian L(�) and volume form ✏. The equations of motion E(�) = 0 and symplectic
structure ⇥ appear in the variation of L:

�(L✏) = d⇥(�, ��)� E(�)��. (15)

where ⇥(�, ��) = ✏
a

✓a(�, ��) is the symplectic potential current and ✏
a

:= ı
@a✏. And we have

identities like
✏ = dxa ^ ✏

a

= (dxa ^ dxb) ^ ✏
ba

, ✏a = ⇤dxa, ✏
a

= ı
@a✏ (16)

The canonical energy associated with a vector V is given by the integral of the Noether current

H⌃[V ] :=

Z

⌃
Ja[V ]✏

a

, Ja[V ] := (✓a(�,L
V

�)� V aL) J [V ] := ⇥(L
V

�)� ı
V

L ⌦ = �⇥

(17)
In the abscence of gravity this current is conserved only if V is a killing vector preserving the
background metric L

V

g
ab

. From the definition of the current and the Noether identity we see
that the non conservation of energy is measured by the background metric variation: Suppose
that ⌃0,⌃1 are two slices possessing the same bounbounding a region of spacetime @M = ⌃0[⌃̄1

where the conjugate reverse the orientation. Accordingly we have that
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✏(r
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b

. (18)

For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
�T abV

b

. and the canonical energy can be written as

Ja

M

[V ] = �T abV
b

, H(V ) = �
Z

⌃
✏
a

T abV
b

. (19)
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For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
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1 Local subsystem

The question that interest is wether we can define the notion of local subsytem in Gravity.
That is given a Hilbert space H can we decompose it in terms of Hilbert spaces associated with
subregions. For a scalar field theory or spin system we have that

H = H⌃ ⌦H⌃̄ (1)

H 6= H⌃ ⌦H⌃̄ (2)

⌃ ⌃̄ dim(H⌃) =
Vol⌦(⌃)

(2⇡~)d (3)

From which we derive our notion of locality. The hilbert space splits as a tensor product. This
is no longer true for gauge and gravity in fact

H⌃[⌃̄ � H⌃ ⌦H⌃̄, @⌃ = S. (4)

H⌃[⌃̄ ⇢ Ĥ⌃ ⌦ Ĥ⌃̄, @⌃ = S. (5)

[O⌃, O⌃̄] = 0 (6)

eipL/~ (7)

The split HS is too small :( This follows from the fact that certain gauge invariant observables
are no longer gauge invariant for the subsytems. A typical observable in gravity is the holonomy
of the gravitational connection along a closed curve. If that curve cross S = @⌃ gauge invariant
is broken for the subsystem.

Present the geometrical setting and intrduce the concept of entangling spheres.
How do we solve this ? how can we split our Hilbert space our our set of gauge invariant
operators. This is a key definition in order to understand locality

The key idea is to design an extended phase space

Ĥ⌃ = H⌃ ⌦H
S

� H⌃ ⌃ S (8)

P⌃ (9)

that contains new and physical degrees of freedom associated with the presence of the bound-
ary.
What are these? How do we find them ? How do we know they are physical degrees of freedom?
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• Kijowski, Gawedzki, Crnkovic, Ashtekar, Wald, L.F, Donnelly,….
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•In Field theory one uses the covariant phase space techniques



Gravity symplectic potential

For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
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. and the canonical energy can be written as
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The minus sign is necessary since on a spacelike slice with normal n and volume form ✏
n

we
have ✏
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n

n
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. The symplectic potential for gravity with L = 1
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The Gravitational Noether current is Ja[V ] = ✓a(gL
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g)� 1
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(rcV d) (24)

co dim 2 form integrate along dimension d� 2. where Q = r
a

V
b

✏ab

Q[ab] := raV b (25)

r
a

Qab[V ] = r
a

r[aV b] = r
a

r(aV b) �r
a

rbV a (26)

= r
a

r(aV b) �Rb

c

V c +rb(r
a

V a) (27)

= Jb[V ]�Gb

c

V c. (28)

This shows that the sum of the gravity and matter current is conserved for any V and it is equal
to

Jb[V ]
G

+ Jb

M

[V ] = r
a

Jab[V ], Jab[V ] = r[aV b]. (29)

The quasi-local energy associated with an observer V is given by

H(V ) =

Z

S

⇤dg(V ) =

Z

S

✏ab?r[aVb] (30)

where ✏ab? =
p
q(¯̀a`b � ¯̀b`a).

4 Gauge invariance

[E?(x)
a, Eb

?(y)] = i�(x, y)F ab

c

Ec

?(y) [E⌫

a

(x), Ab

µ

(y)] = i�(x, y) (31)

Talk a bit about the formalism, L, ✓ already done and also, � and the notion of interior
product

We now consider how ✓ transforms under the gauge symmetries of general relativity, the
di↵eomorphism group. Let Y : M ! M be a di↵eomorphism of spacetime and denote by
Y ⇤ : T ⇤

Y (x)M ! T ⇤
x

M the pullback under this di↵eomorphism. Just as in Yang-Mills, the
variation � does not commute with the pullback Y ⇤ due to terms that involve the variation of
Y . Instead we have the following relation:

�Y ⇤(T ) = Y ⇤(�T + L
�Y T ) (32) {deltaXstar}

1
we work in units where 8⇡G = 1

4

For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
�T abV

b

. and the canonical energy can be written as

Ja

M

[V ] = �T abV
b

, H(V ) = �
Z

⌃
✏
a

T abV
b

. (22)
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n

we
have ✏

a

= �✏
n

n
a

. The symplectic potential for gravity with L = 1
2✏gR(g) is simply1 say units

⇥[g, �g] =
1

2
r

b

⇣
�gab � gab�g

⌘
✏
a

. (23)
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Talk a bit about the formalism, L, ✓ already done and also, � and the notion of interior
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we work in units where 8⇡G = 1
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We start with the Lagrangian
with pre-symplectic potential form

Gauge symmetry : the Noether current associated with  diffeomorphisms 
is a pure boundary term: Gravitational Gauss Law.

a vector field, infinitesimal generator of diffeomorphisms 

where
✓
�

= �✏
a

gab(�� @
b

�). (23)

then

V = V a@
a

H[V ] := (✓(L
V

�)� ı
V

L) (24)

Ha[V ] = (✓a(L
V

g)� V aL)✏
a

(25)

= ✏aV b(@
b

�@
a

�+
1

2
g
ab

L) (26)

= ✏aV bT
ab

(27)

�L = ��gab
✓
@
a

�@
b

�+
1

2
g
ab

`

◆
✏
g

(28)

For fermions it is much more interesting

L =  ̄�ar
a

 (29)

From the definition of the current and the Noether identity we see that the non conservation
of energy is measured by the background metric variation: Suppose that ⌃0,⌃1 are two slices
possessing the same bounbounding a region of spacetime @M = ⌃0 [ ⌃̄1 where the conjugate
reverse the orientation. Accordingly we have that

H⌃1 [V ]�H⌃0 [V ] = �
Z

M

(L
V

g
ab

)
�S

�g
ab

= �
Z

M

✏(r
a

V
b

)T ab = �
Z

@M

✏
a

T abV
b

. (30)

For a scalar field, or Yang-mills field the Noether current depends tensorially on the vector, i-e
J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
�T abV

b

. and the canonical energy can be written as

Ja

M

[V ] = �T abV
b

, H(V ) = �
Z

⌃
✏
a

T abV
b

. (31)

The minus sign is necessary since on a spacelike slice with normal n and volume form ✏
n

we
have ✏

a

= �✏
n

n
a

. The symplectic potential for gravity with L = 1
2✏gR(g) is simply1 say units

⇥[g, �g] =
1

2
r

b

⇣
�gab � gab�g

⌘
✏
a

. (32)

The Gravitational Noether current is Ja[V ] = ✓a(gL
V

g)� 1
2RV a. We introduce a charge density

Q as
Q = ⇤dg(V ) = ✏abr[aVb] =

p
g(dxa ^ dxb)✏

abcd

(rcV d) = dSab✏
abcd

(rcV d) (33)

co dim 2 form integrate along dimension d� 2. where Q = r
a

V
b

✏ab

Q[ab] := raV b (34)

r
a

Qab[V ] = r
a

r[aV b] = r
a

r(aV b) �r
a

rbV a (35)

= r
a

r(aV b) �Rb

c

V c +rb(r
a

V a) (36)

= Jb[V ]�Gb

c

V c. (37)

1
we work in units where 8⇡G = 1
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H[V ] = C
V

+ dQ[V ] (38)

C
V

= ✏aG
ab

V b. (39)

This shows that the sum of the gravity and matter current is conserved for any V and it is equal
to

Jb[V ]
G

+ Jb

M

[V ] = r
a

Jab[V ], Jab[V ] = r[aV b]. (40)

The quasi-local energy associated with an observer V is given by

H(V ) =

Z

S

⇤dg(V ) =

Z

S

✏ab?r[aVb] (41)

where ✏ab? =
p
q(¯̀a`b � ¯̀b`a).

4 Gauge invariance

[E?(x)
a, Eb

?(y)] = i�(x, y)F ab

c

Ec

?(y) [E⌫

a

(x), Ab

µ

(y)] = i�(x, y) (42)

Talk a bit about the formalism, L, ✓ already done and also, � and the notion of interior
product

We now consider how ✓ transforms under the gauge symmetries of general relativity, the
di↵eomorphism group. Let Y : M ! M be a di↵eomorphism of spacetime and denote by
Y ⇤ : T ⇤

Y (x)M ! T ⇤
x

M the pullback under this di↵eomorphism. Just as in Yang-Mills, the
variation � does not commute with the pullback Y ⇤ due to terms that involve the variation of
Y . Instead we have the following relation:

�Y ⇤(T ) = Y ⇤(�T + L
�Y T ) (43) {deltaXstar}

where L
V

denotes the spacetime Lie derivative along the vector field V and where we have
introduced the vector field

�a
Y

(x) := (�Y a � Y �1)(x). (44) {deltaX}
under a di↵eomorphism of the underlying fields ✓ transforms as:

✓[Y ⇤g, �Y ⇤g] = Y ⇤ (✓[g, �g] + ✓[g,L
�Y g]) . (45) {newtheta}

This is not simply the pullback of the symplectic potential, Using the surface charge density we
can write this as

✓[Y ⇤g, �Y ⇤g] = Y ⇤ (✓[g, �g] + (ı
�Y ✏)L+ dQ

g

[�
Y

]) . (46)

The question is : Is it possible to add degrees of freedom that renders the symplectic structure
manifestly invariant under di↵eomorphisms even in the presence of boundaries? And: What are
they The answer is yes and what they are is simply a choice of frame. That is we need to specify
a map

X : D ⇢ Rd ! M (47)

Here D is a reference Ball in Minkowski, i-e a domain ( the lab) in Minkowski represented the
Lab or the observer. D can be though of as a reference ball CF Lagrangian picture versus
Eulerian picture in fluid mechanics. We will use that ⌃ = X(�) and that S = X(s).
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The energy associated with a region is a pure boundary term
it is quasi-local 
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J [↵V ] = ↵J [v] for any function ↵ and it coincides with the energy momentum tensor Ja[V ] =
�T abV
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. and the canonical energy can be written as

Ja
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[V ] = �T abV
b

, H(V ) = �
Z

⌃
✏
a

T abV
b

. (42)

The minus sign is necessary since on a spacelike slice with normal n and volume form ✏
n

we
have ✏

a

= �✏
n

n
a

. The symplectic potential for gravity with L = 1
2✏gR(g) is simply1 say units

⇥[g, �g] =
1

2
r

b

⇣
�gab � gab�g

⌘
✏
a

. (43)

The Gravitational Noether current is Ja[V ] = ✓a(gL
V

g)� 1
2RV a. We introduce a charge density

Q as
Q = ⇤dg(V ) = ✏abr[aVb] =

p
g(dxa ^ dxb)✏

abcd

(rcV d) = dSab✏
abcd

(rcV d) (44)

co dim 2 form integrate along dimension d� 2. where Q = r
a

V
b

✏ab

Q[ab] := raV b (45)

r
a

Qab[V ] = r
a

r[aV b] = r
a

r(aV b) �r
a

rbV a (46)

= r
a

r(aV b) �Rb

c

V c +rb(r
a

V a) (47)

= Hb[V ]�Gb

c

V c. (48)

J [V ] = C
V

+ dQ[V ] (49)

C
V

= ✏aG
ab

V b. (50)

This shows that the sum of the gravity and matter current is conserved for any V and it is equal
to

Jb[V ]
G

+ Jb

M

[V ] = r
a

Jab[V ], Jab[V ] = r[aV b]. (51)

The quasi-local energy associated with an observer V is given by

H(V ) =

Z

S

⇤dg(V ) =

Z

S

✏ab?r[aVb] (52)

where ✏ab? =
p
q(¯̀a`b � ¯̀b`a).

1
we work in units where 8⇡G = 1
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0

[Ea
e , E

b
e0 ] = i�ee0C

ab
cE

c
e. (1)

A⌃[⌃̄ � A⌃ _A⌃̄ (2)

(E?,') (3)

Z⌃ = A⌃ \A0
⌃ = C (4)

(', Xa) (5)

QS(W ) 6= 0 {QS(V ), ·} = �V (6)

X

0 = X

1 = 0 (7)

J(V ) := ✓(�,LV �,�)� ıVL (8)

' : S ! G X

a(x) : U ⇢ Rd ! M (9)

�VQS(W ) = 0. (10)

J⌃(V )=̂Q@⌃(V ) =

Z

@⌃

r[a
V

b]
✏ab. (11)

2 Main

⇤lfreidel@perimeterinstitute.ca



Extended phase space

In gravity, a choice of gauge is a choice of coordinates.

Introduce Xµ : R4 ! M to the phase space [WD & Freidel 2016]

Xµ

R4 M

Y

Xµ is the gravitational analog of '.

34

4.1 Gauge invariance
{subsection:gravity-puregauge}

Xa Rd (56)

We now want to explore the gauge invariance of the extended symplectic structure. This
follows closely the formal derivation given in section ?? for Yang-Mills. Let V be a vector field
and consider the following variation

�
V

g
ab

= L
V

g
ab

, �
V

Xa = �V a. (57)

This is the infinitesimal version of the transformation

(g,X) ! (Y ⇤g, Y �1 �X)

where Y = 1 + V + O(V 2). The infinitesimal version of di↵eomorphism invariance of the
symplectic potential shown in (??) translates into the identity

L
V

⇥ = 0. (58)

where the equality is valid o↵-shell.
This implies gauge invariance. To see this we construct the generator of gauge transformation

C(V ):
I
V

⌦ = I
V

�⇥ = ��I
V

⇥ = �C(V )

where I
V

⌦ = ⌦(L
v

g, �g) and ⌦ = ⌦(�1, �2). We find

C(V ) = �I
V

✓̂=̂0 (59)

4.2 Surface symmetries

We no consider a transformation of the reference system Z : U ! U . This corresponds to a
change of the reference surface s which is mapped onto S, and of the surroundings of that surface.
It acts by changing the labelling of the points, but keeps the dynamical fields unchanged:

g
ab

! g
ab

, X ! X � Z. (60)

Note that like in Yang-Mills the symmetry acts on the opposite side of X from the gauge
transformation.

To find the infinitesimal version of this transformation, we let Z = I +w +O(w2), where w
is a vector field on U . Then we have in components (X � Z)a = Xa + @

b

Xawb +O(w2).

�
w

g
ab

= 0, �
W

Xa = (@
b

Xa)wb. (61)

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (62)

This defines a vector field �
w

on phase space where
We now have two main results:
• This transformation is a symmetry and not a gauge: It possess charges that generates trans-
formations.
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Reference Frame
•P1:     is not gauge invariant.
•P2:     is ambiguous, we can add any boundary term to it. 

Colluding these two issues we can resolve one by the other:
We can add boundary degree of freedom such that they restore gauge 
invariance. Not too few and not too many.
What are these degrees of freedom?:  
A choice of  boundary  reference frame:

A collection of scalar fields, invertible. They are necessary in order to 
locates boundaries inside M and parametric the boundary frame.   
Boundaries at 

This is not a purely quantum problem! Classically N = V number of state = phase space
volume. So the classical question is wether there are additional dof or not that enter the
symplectic structures in the presence of the boundary.

• In the particle case we know the answer. The mathematical fact is that the only observable
independent quantity associated with a particle is its mass. WE can always go to the com mass
frame. That doesn’t mean that momenta is phyically irrelevant. Momenta s a physical observer
dependent quantity. M is a casimir momenta labels the states of the representation which is
infinite dimensional.

The same aply to BH. The only observer indepependent quantity we can assign to a AF
spactime is the mass and spin like a particle. But that doesnt mean that there are no degree of
freedom which are observer dependent.

In fact we’ll show that the
• Basic confusion between Gauge and symmetry. Symmetry is usually defined as isometry

preserving a background structure. Here we will use the more physicak definition that sym-
metries are associated with the action Noether charges. Were these Noether charges do not
vanish.

• gravity is locality holographic ( explain how this di↵er from Ads/CFT). Not only we
have boundary degrees of freedom, but ( a large subset of) (all?) physical observables somehow
localise to the boundary. Conserved charge can all be localise on codim 2 surfaces. Very di↵erent
from usual FT where dof localises on codim 1 surfaces!

P̂⌃ = P⌃ ⇥ P
S

(15)

P̂⌃[⌃̄ = P̂⌃ ⇥
GS P̂⌃̄ (16)

{Q
S

(V ), ·} = �
V

(17)

�g
ab

= 0 (18)

3 Quasi-Local energy of embedded spheres

L✏ (19)

Given a Lagrangian L(�) and volume form ✏. The equations of motion E(�) = 0 and symplectic
structure ⇥ appear in the variation of L:

�(L✏) = d⇥(�, ��)� E(�)��. (20)

where ⇥(�, ��) = ✏
a

✓a(�, ��) is the symplectic potential current and ✏
a

:= ı
@a✏. L ! L + d`

⇥ ! ⇥+ �` And we have identities like

✏ = dxa ^ ✏
a

= (dxa ^ dxb) ^ ✏
ba

, ✏a = ⇤dxa, ✏
a

= ı
@a✏ (21)

The canonical energy associated with a vector V is given by the integral of the Noether current

⇥(��) + d↵(��) (22)

H⌃[V ] :=

Z

⌃
Ja[V ]✏

a

, Ja[V ] := (✓a(�,L
V

�)� V aL) J [V ] := ⇥(L
V

�)� ı
V

L ⌦ = �⇥

(23)
In the abscence of gravity this current is conserved only if V is a killing vector preserving the
background metric L

V

g
ab

.
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a

= ı
@a✏ (21)

The canonical energy associated with a vector V is given by the integral of the Noether current
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Z
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Ja[V ]✏

a
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V
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V
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(23)
In the abscence of gravity this current is conserved only if V is a killing vector preserving the
background metric L

V

g
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.
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In gauge theory these would be a choice of boundary section of the principal 
bundle: Ehresman connection.
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0

[Ea
e , E

b
e0 ] = i�ee0C

ab
cE

c
e. (1)

A⌃[⌃̄ � A⌃ _A⌃̄ (2)

(E?,') (3)

Z⌃ = A⌃ \A0
⌃ = C (4)

(', Xa) (5)

QS(V ) {QS(V ), ·} = �V (6)

X0 = X1 = 0 (7)

2 Main
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Covariant symplectic potential
Extended phase space

In gravity, a choice of gauge is a choice of coordinates.

Introduce Xµ : R4 ! M to the phase space [WD & Freidel 2016]

Xµ

R4 M

Y

Xµ is the gravitational analog of '.

34

4.1 Gauge invariance
{subsection:gravity-puregauge}

Xa Rd (56)

We now want to explore the gauge invariance of the extended symplectic structure. This
follows closely the formal derivation given in section ?? for Yang-Mills. Let V be a vector field
and consider the following variation

�
V

g
ab

= L
V

g
ab

, �
V

Xa = �V a. (57)

This is the infinitesimal version of the transformation

(g,X) ! (Y ⇤g, Y �1 �X)

where Y = 1 + V + O(V 2). The infinitesimal version of di↵eomorphism invariance of the
symplectic potential shown in (??) translates into the identity

L
V

⇥ = 0. (58)

where the equality is valid o↵-shell.
This implies gauge invariance. To see this we construct the generator of gauge transformation

C(V ):
I
V

⌦ = I
V

�⇥ = ��I
V

⇥ = �C(V )

where I
V

⌦ = ⌦(L
v

g, �g) and ⌦ = ⌦(�1, �2). We find

C(V ) = �I
V

✓̂=̂0 (59)

4.2 Surface symmetries

We no consider a transformation of the reference system Z : U ! U . This corresponds to a
change of the reference surface s which is mapped onto S, and of the surroundings of that surface.
It acts by changing the labelling of the points, but keeps the dynamical fields unchanged:

g
ab

! g
ab

, X ! X � Z. (60)

Note that like in Yang-Mills the symmetry acts on the opposite side of X from the gauge
transformation.

To find the infinitesimal version of this transformation, we let Z = I +w +O(w2), where w
is a vector field on U . Then we have in components (X � Z)a = Xa + @

b

Xawb +O(w2).

�
w

g
ab

= 0, �
W

Xa = (@
b

Xa)wb. (61)

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (62)

This defines a vector field �
w

on phase space where
We now have two main results:
• This transformation is a symmetry and not a gauge: It possess charges that generates trans-
formations.
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With these we can construct a gauge invariant 
symplectic potential

4 Gauge invariance

[E?(x)
a, Eb

?(y)] = i�(x, y)F ab

c

Ec

?(y) [E⌫

a

(x), Ab

µ

(y)] = i�(x, y) (49)

Talk a bit about the formalism, L, ✓ already done and also, � and the notion of interior
product

We now consider how ✓ transforms under the gauge symmetries of general relativity, the
di↵eomorphism group. Let Y : M ! M be a di↵eomorphism of spacetime and denote by
Y ⇤ : T ⇤

Y (x)M ! T ⇤
x

M the pullback under this di↵eomorphism. Just as in Yang-Mills, the
variation � does not commute with the pullback Y ⇤ due to terms that involve the variation of
Y . Instead we have the following relation:

�Y ⇤(T ) = Y ⇤(�T + L
�Y T ) (50) {deltaXstar}

where L
V

denotes the spacetime Lie derivative along the vector field V and where we have
introduced the vector field

�a
Y

(x) := (�Y a � Y �1)(x). (51) {deltaX}
under a di↵eomorphism of the underlying fields ✓ transforms as:

✓[Y ⇤g, �Y ⇤g] = Y ⇤ (✓[g, �g] + ✓[g,L
�Y g]) . (52) {newtheta}

This is not simply the pullback of the symplectic potential, Using the surface charge density we
can write this as

✓[Y ⇤g, �Y ⇤g] = Y ⇤ (✓[g, �g] + (ı
�Y ✏)L+ dQ

g

[�
Y

]) . (53)

The question is : Is it possible to add degrees of freedom that renders the symplectic structure
manifestly invariant under di↵eomorphisms even in the presence of boundaries? And: What are
they The answer is yes and what they are is simply a choice of frame. That is we need to specify
a map

X : D ⇢ Rd ! M (54)

Here D is a reference Ball in Minkowski, i-e a domain ( the lab) in Minkowski represented the
Lab or the observer. D can be though of as a reference ball CF Lagrangian picture versus
Eulerian picture in fluid mechanics. We will use that ⌃ = X(�) and that S = X(s).

Given this it is posssible to write a Gauge invariant symplectic structure that include
these as physical degrees of freedom.

It is given by

⇥̂⌃[�g, �X ] =

Z

X(�)
(✓[�g] + i

�XL) +

Z

X(s)
Q[�

X

]. (55)

The first term is gravity second conformal flux, third the pure boundary dof. The bulk dof
disolves themselves in the symplectic structure since once we impose taht the variations �L = 0
on-shell.

4.1 Gauge invariance
{subsection:gravity-puregauge}
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It modifies the symplectic form by a boundary term only, so only the 
boundary frame X becomes physical
and carries additional degrees of freedom 
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⌦̂⌃ = ⌦⌃ +

Z

S

✓
ı
�X (✓ + dQ[�

X

]) + �Q[�
X

] +
1

2
ı
�X ı�XL

◆
. (56)

⌦̂⌃ = ⌦⌃(�g) + ⌦̂
S

(�g, �
X

) (57)

�a
X

= �Xa �X�1 (58)
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This fixes uniquely the boundary ambiguity and restore G invariance



Gauge invariance 

4.1 Gauge invariance
{subsection:gravity-puregauge}

We now want to explore the gauge invariance of the extended symplectic structure. This follows
closely the formal derivation given in section ?? for Yang-Mills. Let V be a vector field and
consider the following variation

�
V

g
ab

= L
V

g
ab

, �
V

Xa = �V a. (62)

This is the infinitesimal version of the transformation

(g,X) ! (Y ⇤g, Y �1 �X)

where Y = 1 + V + O(V 2). The infinitesimal version of di↵eomorphism invariance of the
symplectic potential shown in (??) translates into the identity

L
V

⇥ = 0. (63)

where the equality is valid o↵-shell.
This implies gauge invariance. To see this we construct the generator of gauge transformation

C(V ):
I
V

⌦ = I
V

�⇥ = ��I
V

⇥ = �C(V )

where I
V

⌦ = ⌦(L
v

g, �g) and ⌦ = ⌦(�1, �2). We find

C(V ) = �I
V

✓̂=̂0 (64)

Q[V ] = 0, Q[W ] 6= 0. (65)

L
V

⇥̂ = 0 I
V

⌦ = �H(V ) H(V )=̂0 (66)

4.2 Surface symmetries

We no consider a transformation of the reference system Z : U ! U . This corresponds to a
change of the reference surface s which is mapped onto S, and of the surroundings of that surface.
It acts by changing the labelling of the points, but keeps the dynamical fields unchanged:

g
ab

! g
ab

, X ! X � Z. (67)

Note that like in Yang-Mills the symmetry acts on the opposite side of X from the gauge
transformation.

To find the infinitesimal version of this transformation, we let Z = I +w +O(w2), where w
is a vector field on U . Then we have in components (X � Z)a = Xa + @

b

Xawb +O(w2).

�
w

g
ab

= 0, �
W

Xa = (@
b

Xa)wb. (68)

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (69)

This defines a vector field �
w

on phase space where
We now have two main results:
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Restoration of gauge invariance requires
 new boundary degrees of freedom.

Not so surprising after all.  [Teitelboim, Balachandran et al., Carlip,…]

Gauge invariance is restored in the presence of a boundary:

But these have remarkable consequences:  It implies the presence of 
new boundary symmetries.

These boundary symmetry are the finite analogs of asymptotic 
symmetries [ BMS, Ashtekar, Strominger, Campaglia…]



Gauge versus symmetry 
The difference between gauge and symmetry lies in the value 
associated with the Noether charges.

Gauge: The Noether charge
vanish on shell.

phases conjugate to C are:
•Unphysical
•labels redundancies 

Symmetry : The Noether charge
doesn’t vanish

phases conjugate to  H are 
•Physical 
•labels different physical  states

Diffeomorphisms are gauge  Change of frame are symmetries

Symmetries are not 
necessarily isometries
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We no consider a transformation of the reference system Z : U ! U . This corresponds to a
change of the reference surface s which is mapped onto S, and of the surroundings of that surface.
It acts by changing the labelling of the points, but keeps the dynamical fields unchanged:

g
ab

! g
ab

, X ! X � Z. (60)

Note that like in Yang-Mills the symmetry acts on the opposite side of X from the gauge
transformation.

To find the infinitesimal version of this transformation, we let Z = I +w +O(w2), where w
is a vector field on U . Then we have in components (X � Z)a = Xa + @

b

Xawb +O(w2).

�
w

g
ab

= 0, �
W

Xa = (@
b

Xa)wb. (61)

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (62)

This defines a vector field �
w

on phase space where
We now have two main results:
• This transformation is a symmetry and not a gauge: It possess charges that generates trans-
formations.
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Extended phase space

In gravity, a choice of gauge is a choice of coordinates.

Introduce Xµ : R4 ! M to the phase space [WD & Freidel 2016]

Xµ

R4 M

Y

Xµ is the gravitational analog of '.
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1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0

[Ea
e , E

b
e0 ] = i�ee0C

ab
cE

c
e. (1)

A⌃[⌃̄ � A⌃ _A⌃̄ (2)

(E?,') (3)

Z⌃ = A⌃ \A0
⌃ = C (4)

(', Xa) (5)
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1 = 0 (7)
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' : S ! G X

a(x) : U ⇢ Rd ! M (9)

�VQS(W ) = 0. (10)

J⌃(V )=̂Q@⌃(V ) =

Z

@⌃

r[a
V

b]
✏ab. (11)

X

a (12)

2 Main

⇤lfreidel@perimeterinstitute.ca

Gravity

Gravity is a theory with a local symmetry, general covariance.

This symmetry leads to constraint equations:

equations of motion with no time derivatives.

The constraints are responsible

for the force of gravity:r 2
� = 4⇡G ⇢.Regions of space are not independent subsystems.

We can treat them the same way as in electrodynamics.
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4.1 Gauge invariance
{subsection:gravity-puregauge}

We now want to explore the gauge invariance of the extended symplectic structure. This follows
closely the formal derivation given in section ?? for Yang-Mills. Let V be a vector field and
consider the following variation

�
V

g
ab

= L
V

g
ab

, �
V

Xa = �V a. (62)

This is the infinitesimal version of the transformation

(g,X) ! (Y ⇤g, Y �1 �X)

where Y = 1 + V + O(V 2). The infinitesimal version of di↵eomorphism invariance of the
symplectic potential shown in (??) translates into the identity

L
V

⇥ = 0. (63)

where the equality is valid o↵-shell.
This implies gauge invariance. To see this we construct the generator of gauge transformation

C(V ):
I
V

⌦ = I
V

�⇥ = ��I
V

⇥ = �C(V )

where I
V

⌦ = ⌦(L
v

g, �g) and ⌦ = ⌦(�1, �2). We find

C(V ) = �I
V

✓̂=̂0 (64)

C[V ] = 0, H[W ] 6= 0. (65)

L
V

⇥̂ = 0 I
V

⌦ = �H(V ) H(V )=̂0 (66)

�
V

g
ab

= L
V

g
ab

�
V

Xa = V a �X. (67)

g ! Y ⇤g X ! Y �1 �X (68)

�
w

g
ab

= 0 �
w

Xa = @
b

Xawb (69)

4.2 Surface symmetries

We no consider a transformation of the reference system Z : U ! U . This corresponds to a
change of the reference surface s which is mapped onto S, and of the surroundings of that surface.
It acts by changing the labelling of the points, but keeps the dynamical fields unchanged:

g
ab

! g
ab

, X ! X � Z (70)

Note that like in Yang-Mills the symmetry acts on the opposite side of X from the gauge
transformation.

To find the infinitesimal version of this transformation, we let Z = I +w +O(w2), where w
is a vector field on U . Then we have in components (X � Z)a = Xa + @

b

Xawb +O(w2).

�
w

g
ab

= 0, �
W

Xa = (@
b

Xa)wb. (71)

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (72)
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Surface symmetry algebra

•Super/surface boost : Boosts that transform the normal plane of S 
in a position dependent manner.

• Super/surface rotation : Diffeomorphism of S that move S tangent 
to itself.

• Super/surface translation : Translations of the surface along a normal 
direction. 

Gravity in the presence of finite boundary possesses an infinite 
dimensional symmetry group!   
This group is a generalization of the BMS symmetry group.

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (73)

This defines a vector field �
w

on phase space where
We now have two main results:
• This transformation is a symmetry and not a gauge: It possess charges that generates trans-
formations.
• This charges are gauge invariant observables!
They label the physical states. we clearly see that this contraction is Hamiltonian that is
�H

w

= I�w⌦, where

Ĥ
w

= �
Z

X(�)
Q

g

[W ] = �1

2

Z

S

?dgW. (74) {Hw}

We can now easily find the algebra of the surface-preserving transformations. WE can also check
that they are gauge invariant If v is another surface-preserving transformation, then by direct
substitution we have

{H
v

, H
w

} = �I�v�Hw

= H[v,w], {C(V ), H(w)} = 0. (75) {HvHw}

Note that the surface-preserving condition is preserved by the Lie bracket: if v and w are
surface-preserving then so is [v, w].

G
S

=
�
Di↵(S)n SL(2,R)S

�
n (Rd�2)S (76)

5 Surface Charges and symmetry

We can write the charges in terms of a decomposition of the metric

ds2 = h
ij

(dxidxj + q
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(d�A +AA

i

dxi)(d�B +AB

i

dxi) (77)

The symmetry decomposes in three di↵erent component:

(78)

The charge can be written explicitely in terms of this decomposition. We decompose

V = V i

?@i + V A

? @
A

. (79)

The Hamiltonian decomposes in three components:

H[V?] =

Z

S

p
q

p|h|
⇣
@
i

H i

j

V j

?

⌘
, (80)

B[V?] =
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S

p
q

p|h|
⇣
H i

j
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i

V j
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⌘
, (81)

R[Vk] =

Z

S

p
q

p|h|(FA

V A

k ). (82)

H generates super translation, B generates super Boosts, and R generates super Rotations.
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Gravity charges
In order to compute the surface charges we introduce frame fields      
adapted to the entangling surface

equivalentely we can define

I�w

�
X

:= W, �W = �W = �L
�XW = [W, �

X

]. (73)

This defines a vector field �
w

on phase space where
We now have two main results:
• This transformation is a symmetry and not a gauge: It possess charges that generates trans-
formations.
• This charges are gauge invariant observables!
They label the physical states. we clearly see that this contraction is Hamiltonian that is
�H

w

= I�w⌦, where

Ĥ
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coordinates normal to S 
coordinates tangent to S
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normal metric generates 
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Conclusion
•Gauge invariance in the presence of a boundary requires new dof: These 
are boundary phases or boundary frames, that generalizes Aharanov-
Bohm phases in a FT context.

•They organize themselves in terms of a boundary symmetry algebra
•They explain why and how the link data in a discretization has to be 
non-commutative. 

•This resolves a long standing question: Gauge invariance is not just a 
redundancy, it is associated with an infinite dimensional symmetry group

recent developments
•In first order gravity, understanding that the combination of edge modes 
for gauge + diffeos reconstruct the boundary coframe field e. Proof that 
the boundary symmetry group includes centrally extended Virasoro 
symmetry: Gravity    CFT

•New understanding of edge modes in CS theory
•new perspective on Inclusion of Null boundaries
•New take on BRST = covariantisation of Bdy symmetry
•The target of compactified string is Non-commutative  

Pranzetti, Perez
M. Geiller

Hopfmueller, Wieland
Riello, Gomes
Minic,Leigh



Surface boosts
• Super/surface boost : Boosts that transform the normal plane of S 
in a position dependent manner

Infinitesimal boost are vector fields                   such that 

Surface boosts

Surface boosts change the normal frame of the surface
independently at each point of S, keeping points fixed.
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Surface Diffeomorphisms
• Super/surface boost : leave the entangling surface invariant but 
move points along it

Infinitesimal diffeos are vector fields such that 

Surface di↵eomorphisms

Surface di↵eomorphisms leave the entangling surface invariant,
but move the points around.
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Infinitesimal surface di↵eomorphisms are vector fields such that

W?|S = 0 and Wk|S 6= 0.
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Surface translations
• Surface translations : move the entangling surface

Infinitesimal translations are vector fields such that 

Surface translations
Surface translations move the entangling surface.
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W?|S 6= 0.

They are not canonical symmetries of the phase space;
there can be flux of states through the boundary.
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Surface translations
Surface translations move the entangling surface.
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They are not canonical symmetry of phase space when there is 
symplectic flux through the boundary. 



Observables or not?

Memory effect

The boundary degrees of freedom are definitely observables.
H generates super translation, B generates super Boosts, and R generates super Rotations

�R[Wk] = Gravitationalflux (85)

• Surface boosts These are generated by vector fields with Wk $ 0 and W? $ 0 but
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? 6$ 0. They generate position-dependent linear deformations of the normal plane of
S. We call them surface boosts because they are a close analog of the boost transformations
in the normal plane (x0, x1). Like the usual boost, which leaves invariant a codimension-2
plane, the surface boosts leave S invariant. Unlike the usual boost, the surface boosts
are not isometries of any particular background. Moreover we will see that these surface
boosts generate a larger sl(2,R) subalgebra of the two-dimensional linear group at each
point of S.

• Surface di↵eomorphisms Vector fields with W? $ 0 and Wk 6$ 0 generate infinitesimal
di↵eomorphisms that map the surface S onto itself.

• Surface translations The transformations with W? 6$ 0 transform the surface S normal
to itself.

5.1 ALgebra

We can now see that the normal component of the Lie bracket for surface-preserving transfor-
mations becomes the sl(2,R) algebra while the tangential component reduces to the (D � 2)-
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We see that the components of the densitised curvature F act as generators of tangential dif-
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K0 is an elliptic generator while K1 and K2 are hyperbolic. They satisfy the sl(2,R) commuta-
tion relations

{K0,K1} = 2K2, {K1,K2} = �2K0, {K2,K0} = 2K1. (92)
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A gravitational flux will induce a change of frame 
(local boost, rotation or translation) that registers in the boundary 
gravitational charges
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Symmetry and degree of freedom
Do we understand the nature of degree of freedom in the context 
of gauge symmetries?  Not really, there are many paradoxes…
•Black Hole information paradox.
•Firewall paradox. 
•Is the newtonian potential classical? Is the vacuum unique?
•All these paradoxes are about what is gauge and what is symmetry?
Are observables observer dependent or observer independent?

•Discretisation puzzle: In QED We know that (A,E) are conjugate 
variables and therefore [E,E] = 0. When we discrtise however we 
chose instead that 

Edge modes
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Abstract

1 Introduction

We want to weave together three di↵erent problems: How do we describe the notion of subsystems
in gauge theory and gravity? More precisely what does replace the tensor product structure. For
gauge systems

How do we discretise gauge theory. That is is there constraints from gauge symmetry that
restrict the choice of UV discrete variables one should use?

Is there new symmetries associated with gauge systems?
In essence E,E ]=0

[Ea
e , E

b
e0 ] = i�ee0C

ab
cE

c
e. (1)

2 Main
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•The electric field algebra is non-commutative? Why? Is it a 
discretization artefact? Can it be derived from the continuum? 
What does it mean? What is the gravitational analog?


