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Aim;:

A feasible approximation scheme in which loop quantum
gravity dynamics can be accessed reliably.



Constructing amplitudes

[spin foams:

Simplex amplitude , , ,
Baratin, Barrett, Crane, Dupuis, Engle, Freidel,

g Kaminski, Krasnov, Lewandowski, Livine, Oriti,

. — A5 (J)

J1

Reisenberger, Rovelli, Speziale, ...]

In itself not a complete proposal for a theory of quantum gravity.

How to get triangulation invariant amplitudes
for more complicated boundary states?




Constructing amplitudes

[spin foams:

Slmplex amPIItUde Baratin, Barrett, Crane, Dupuis, Engle, Freidel,

i Kaminski, Krasnov, Lewandowski, Livine, Oriti,
3
Reisenberger, Rovelli, Speziale, ...]

J2 —l AO‘ (] ) [but applies also to many other -

J1

In itself not a complete proposal for a theory of quantum gravity.

How to get triangulation invariant amplitudes
for more complicated boundary states?

Refining Summir?g .
(only bulk?) triangulation over (only bulk?) triangulations

e.g. GFT, see S. Carozza’s talk

Key question: What are actually good boundary states?



Key: What are good boundary states!?

Calculating amplitudes (or solving constraints) should be feasible.

Boundary states should actually be relevant for the description of interesting processes.
(Most states are not.)

—

The dynamics should determine a notion of ‘best boundary states to use’.
(that is identify relevant observables.)




The consistent boundary framework

* A framework to ‘solve quantum gravity’: construction of consistent amplitudes
* ... which define a continuum dynamics

* ... and can be computed in a reliable approximation scheme.

* Provides renormalization framework for background independent theories

* ... with organizational principle for boundary states

How to formulate a consistent theory of quantum gravity (via amplitudes)?



The consistent boundary framework

* A framework to ‘solve quantum gravity’: construction of consistent amplitudes

... which define a continuum dynamics

* ... and can be computed in a reliable approximation scheme.

* Provides renormalization framework for background independent theories

* ... with organizational principle for boundary states

Abandons notion of fundamental building blocks:
In diffeomorphism invariant interacting theories non-local amplitudes are unavoidable.

Opens many questions: e.g. What does triangulation invariance mean for such non-local amplitudes?

Background dependent truncation methods based on locality are not applicable.

(Graph distance does not agree with metric distance.)

How to formulate a consistent theory of quantum gravity (via amplitudes)?



* Consistency

* Feasibility



Consistency: motivation

Should (boundary) spins be small or large? Is it UV or IR?

J3

J1




Consistency: motivation

Should (boundary) spins be small or large? Is it UV or IR?

Boundary data can describe a very small or an arbitrary large simplex.
In particular a macroscopic piece of geometry.

For large boundary data we rather describe IR physics:

The amplitude should be an effective amplitude which takes
into account fluctuations “on smaller scales” -

which would appear if we would refine the boundary.

A, (j) should describe both, small and large scales consistently:

large scales should be determined from short scales

P Need to bootstrap a consistent amplitude.
P Need to formulate the consistency conditions.



Approximation scheme for effective amplitudes

|. Start with amplitude for 2. Defines amplitude for more
simplest building block. complicated boundary via

gluing principle.
—

3. Find a dynamically preferred
truncation back to coarse
boundary. This allows an iterative
coarse graining scheme leading
to a fixed point.

Improved amplitude




Approximation scheme for amplitudes

complicated boundaries

4. Take more and more
into account.

‘ Improved amplitude H Improved amplitude ‘




Approximation scheme for amplitudes

‘ Seed: Initial (a priori inconsistent) amplitudes ‘

‘ Improved amplitude ‘ ‘ Improved amplitude ‘ ‘ Improved amplitude ‘

‘ Determine consistent amplitudes with more and more complicated boundaries. ‘

Amplitude changes across all scales (complexity classes)!



Approximation scheme for amplitudes

‘ Seed: Initial (a priori inconsistent) amplitudes ‘

‘ Improved amplitude ‘ ‘ Improved amplitude ‘ ‘ Improved amplitude ‘

‘ Determine consistent amplitudes with more and more complicated boundaries. ‘

Amplitude changes across all scales (complexity classes)!

Effective amplitude:
takes into account

(arbitrary) refined

boundaries.




Consistency conditions

Boundary Hilbert space
with low complexity

wave functions

AIOW com

embedding of
boundary
Hilbert
spaces

Amed com Ahigh com

[BD NJP 12,BD 14 (Review)]
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Consistency conditions

[BD NJP 12,BD 14 (Review)]

: Boundary Hilbert space
Boundary Hilbert space ounsary P
. : with high complexity
with low complexity :
) wave functions -
wave functions
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embedding of
boundary
Hilbert

spaces

AIOW com Amed com Ahigh com Avery high com

For the amplitudes we demand the consistency conditions:

restricts to

Alovv com ( V9ow com) l Amed com ( zpmed com) l ) Ahigh com ( whigh com)

(pullbacks of
embeddings)



The consistent boundary formulation

[BD NJP 12, BD 14 (Review)]

For the amplitude we demand consistency conditions:

restricts to

Alow com ( Viow com) ] Amed com ( wmed com) l ) Ahigh com ( whigh com)

If this holds for arbitrary refinements: defines continuum amplitudes.

A (complete) family of consistent amplitudes defines a theory* of quantum gravity.

* Corresponds to a complete renormalization trajectory,

with scale given by complexity parameter.



A family of effective amplitudes

restricts to

Alow com ( Dlow com) } Amed com ( wmed Com) l ) Ahigh com ( ¢high com)

L e e 2 T

Amplitudes for simplest building blocks are effective
amplitudes: do include all effects from higher modes.

Opposite to the traditional view:
Simplest building blocks defines ‘fundamental’ amplitude.

Here: Simplest building blocks defines simplest process, e.g.
homogeneous boundary states.
Corresponds rather to IR limit.



What do we gain!

* Provides criteria for a consistent quantum gravity dynamics - consistent over all scales.

* Provides definition of physical vacuum as simplest physical state. [BD, Steinhaus NJP 2014]

* Unifies discrete and continuum formulations,
and in this way addresses
* the issue of discretizations a priori breaking diffeomorphism symmetry [Bahr, BD, CQG 2009]
* discretization or triangulation dependence  [Bahr, BD, PRD 2009, Bahr, BD, Steinhaus PRD |1]
* necessity for non-local amplitudes in (3+1)D [BD, Kaminski, Steinhaus, CQG 2014]
* discretization ambiguities.  [Bahr, BD, Steinhaus PRD | 1]



* Consistency

* Feasibility



The consistent boundary framework

* A consistent family of effective amplitude can be obtained in an iterative approximation
scheme where:

* one starts with simplest state (low complexity) and NOT at highest energy scales.

Definition of new kinematical "low energy’ vacuum states: Marc Geiller’s talk

* the truncation is determined by the dynamics of the system and not chosen by hand.



Dynamics sets conditions for the embedding map

ZA&UC (cUb) = Agner(a U b)



Dynamics sets conditions for the embedding map

ZAaUc (cUb) = Afper(a UD)

(transpose of) (transpose of)
embeddlng map embeddlng map

y Choose embedding maps,
C so that truncation error
d C b is minimized.

truncation,
ideally just a
compression

> > A(aUc)l(c<O) (C> )P A(d Ub) = Airunc(a U b)
C’ c’

|dentifies the most relevant (coarse grained) boundary observables.



A stronger condition

[BD, Hoehn 201 1-13, Hoehn 201 3]

(particularly relevant for quantum gravity) [BD, Steinhaus NJP 2014]

embedding map
—

» A(aUC) (C>c) = Agner(aUc)
C

In this case embedding map coincides with (vacuum) amplitude.

Thus embedding map is clearly decided by the dynamics of the system.



Example: BF theory

[see also Marc Geiller’s talk]

Take spin networks as boundary states.

U }(A{ja {7} A{J;j}; {7}

Amplitude given by “spin Embedding map given

network evalutaion”. by amplitude itself

Consistency conditions follow from triangulation invariance of partition function.



Example: BF theory

[see also Marc Geiller’s talk]

Take spin networks as boundary states.

U }(A{ﬂ {7} A{J;j}; {7}

Amplitude given by “spin Embedding map given

network evalutaion”. by amplitude itself

Consistency conditions follow from triangulation invariance of partition function.

But spin network states are quite bad in “compressing” BF amplitudes!

Another huge disadvantage: gauge invariant spin networks not preserved under coarse graining.

[see Etera Levine’s talk]



Fusion and Curvature basis: e Cloment Deleary

and Aldo Riello’s talk]
(a new gauge invariant alternative to SNW)

[Delcamp, BD, Riello JHEP 2016, JHEP 2017, BD 2017, BD, Delcamp to appear]

(2+1)D: (3+1)D:
Fusion basis labeled Curvature basis labeled
by (Drinfeld double) representations by class angles

A{p} = 5{p},triv (for quantum group: spins)

A{]} — 5{j},triv

Crane-Yetter amplitude much simplified

Embedding map given [ BD 2017]

by amplitude itself:

Pfiner — triv



[see also Clement Delcamp’s

Fusion and Curvature basis: 2nd Aldo Riellos alk

[related:
(a new gauge invariant alternative to SNW) Florian Girelli’s talk]

[Delcamp, BD, Riello JHEP 2016, JHEP 2017, BD 2017, BD, Delcamp to appear]

Expect this basis to be much more practical also for spin foam coarse graining:

* Fusion basis has a built in coarse graining scheme.
* Much less memory required than for SNWs, in particular for configurations near flatness.

* Labels allow immediate insight into geometric observables: curvature and torsion

Dynamics decides on suitable boundary states

and on how to coarse grain or refine such states.



Example: Free scalar field

(massless on 2D Euclidean space)

Boundary value problem on square

¢($’ 1) can be solved in continuum.
¢(O y) ¢(1 y) Solution constructed as superposition of
9 )

-piecewise linear part (zero mode)

¢(x,0) -Fourier modes k>0, for each side separate!

[Minkowski space: Asante, BD to appear: embedding can be based on piecewise linear decomposition only.]



Example: Free scalar field

(massless on 2D Euclidean space)

Boundary value problem on square

¢(5’7> 1) can be solved in continuum.

Solution constructed as superposition of
Fourier mode decomposition 0(0,y) ¢(1,9) PETP

-piecewise linear part (zero mode)

of boundary values for each side.
¢(x,0) -Fourier modes k>0, for each side separate!

Project all higher modes #6 zero.

Go back to real spa

Gtrunc’ (%7 1) | thrunc’ (%7 1)
| o
|
runc’\ 9> 1
thrunc(%? 1) 1 ¢t ( )__

Add higher modes

with zero amplitude

N =1

(in vacuum state).

Embedding maps are non-local. (Suprise: sides are decoupled for non-zero modes.)

Fourier modes do indeed provide a useful scale parameter for free theories.

[Minkowski space: Asante, BD to appear: embedding can be based on piecewise linear decomposition only.]



Tensor network renormalization methods

|dentifying dynamically preferred boundary states and preferred coarse grainings.

JA AL
A AL
I I
Amplitude of a disk region Amplitude for a region
with edges representing with finer boundary
boundary data. data via gluing.

< >

How to compare these!?

Need to ‘coarse grain’ boundary data.



Tensor network renormalization methods

|dentifying dynamically preferred boundary states.

Coarse grain

bare/initial amplitude
depending on four variables

Contract initial amplitudes (sum over bulk variables).
Obtain “effective amplitude” with more boundary
variables.

Truncate /determine embedding map

l | l l
A A Jeeeeeees A AL

1A A_I |A AL

Find an approximation (embedding map) that would
minimize the error as compared to full summation
(dotted lines). For instance using singular value
decomposition, keeping only the largest ones.

Leads to field redefinition, and ordering of fields into
more and less relevant.

“Rescale” (apply embedding map)

A A

e g

| | new effective amplitude

Use embedding maps to define coarse grained
amplitude with the same (as initial) number of
boundary variables.



Tensor network renormalization methods

|dentifying dynamically preferred boundary states.

e

Renormalization flow in a huge space of models:
(almost) arbitrary tensors

Number of (coupling) parameters: ~ X4

Advantage: Do not make assumptions about form of amplitudes.
(But allows a test of such assumptions.)



Decorated tensor networks

[BD, Mizera, Steinhaus, NJP (Best of 2016)]

Allow for more flexibility in type of boundary data, e.g. SNV for lattice gauge

theories.

Flow: in space of arbitrary amplitude functions of fixed boundary data structure.

Can deal with non-Abelian lattice gauge models and spin foams.

Coarse graining with fusion basis and curvature basis.

Expect these bases to be much more effective (computer resource saving).
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3D: [Delcamps, BD, 2016]

Immediate access to interesting observables: curvature and torsion.




Summary

Aim:

A feasible approximation scheme in which the dynamics can be accessed reliably.

Key:
Truncation determined by dynamics.

Type of boundary states determined by dynamics.

Let to / Motivated / Related to the development of lots of techniques:

New vacua for LQG: providing better starting points for coarse graining process.
Self-dual, doubly-finite version of LQG.

Fusion basis and Curvature basis. Clement Delcamp, Aldo Riello’s talk

Marc Geiller’s talk

Coarse graining (Regge) geometries. Seth Asante’s talk

Tensor network renormalization for lattice gauge theories and spin foams. Sebastian Steinhaus’ talk

Holographic properties of (3D) LQG. Etera Livine’s talk, Christophe Goeller’s talk

Expect much more!



