

Coarse-Graining Loop Quantum Gravity

Etera Livine

Laboratoire de Physique LP ENSL & CNRS

Loops' 17 Conference

arXiv 1603.01117 & 1704.04067 & more

Why Coarse-Grain Spin Networks?

The Basic Motivation :

Spin networks = interpreted as Discrete Geometries at Planck scale

Need to coarse-grain to probe geometry at all scales

and understand continuum limit towards smooth manifolds

Why Coarse-Grain Spin Networks?

The Basic Motivation :

Spin networks = interpreted as Discrete Geometries at Planck scale

Need to coarse-grain to probe geometry at all scales

and understand continuum limit towards smooth manifolds

Goal : Build renormalization group flow for geometry states

Necessary to extract systematic (L)QG corrections to GR

Necessary to study phase diagrams and phase transitions

Spin networks defined on a graph :

fundamental graph

effective graph

- we partition network into bounded regions
- we coarse-grain each region into an effective vertex

3 Big Questions :

- What are the relevant d.o.f. of geometry to keep ?
- How to choose the effective graph?
- What data is attached to the effective nodes and links?

3 Big Questions :

- What are the relevant d.o.f. of geometry to keep ?
- How to choose the effective graph?
- What data is attached to the effective nodes and links?

Are we erasing physical bulk d.o.f.s or gauge d.o.f.s ??

3 Big Questions :

- What are the relevant d.o.f. of geometry to keep ?
- How to choose the effective graph?
- What data is attached to the effective nodes and links?

Property of quantum state or property of observer ??

3 Big Questions :

- What are the relevant d.o.f. of geometry to keep ?
- How to choose the effective graph?
- What data is attached to the effective nodes and links?

Property of quantum state or property of observer ??

Pt of view : Requires a measure of « classicality » of geometry

3 Big Questions :

- What are the relevant d.o.f. of geometry to keep ?
- How to choose the effective graph?
- What data is attached to the effective nodes and links ?

Property of quantum state or property of observer ??

Pt of view : Choice of effective graph = choice of observer

Proposal: project graph-changing dyn on fixed background lattice

Choice of effective graph = choice of observer

- Network as lattice of observation at finite resolution
- Defines a cut-off between microscopic/macroscopic
- Gauge-fixing of diffeomorphisms

Proposal: project graph-changing dyn on fixed background lattice

3 Big Questions :

- What are the relevant d.o.f. of geometry to keep ?
- How to choose the effective graph?
- What data is attached to the effective nodes and links?

... spin networks are patchworks of flat regions

Pressed Spin Networks

Introducing New Structures for Quantum States in LQG !!

Pressed Spin Networks

Introducing New Structures for Quantum States in LQG !!

Dressed spin networks with extra data at each node & link to encode local curvature & torsion

- Loopy & tagged spin networks Charles, L 1603.01117
 Double spin networks Charles, L 1607.08359
 q-deformed spin networks BDGL & HXKR 1402.2323 1509.00458
 « Drinfeld tube » networks the B-team 1412.3752 1607.08881
- Loop gravity string

the LAD's 1611.03668

That's for the basic motivation ...

Coarse-graining - Holography

Kinematical level

Dynamical level

A common setting in LQG : it's all about surfaces

Intertwiner at node interpreted as dual surface Bounded region geometry made of several nodes projected to boundary state on surface

Coarse-graining + Holography

Kinematical level

Dynamical level

The same questions :

How much geometry are we losing by projecting on boundary surface?

How much bulk can we reconstruct from the boundary state?

Coarse-graining ←

Kinematical level

Dynamical level

→ Holography

The same questions :

- How much geometry are we losing by projecting on boundary surface?
- How much bulk can we reconstruct from the boundary state?

Interlaced with understanding diffeo's in LQG :

Hamiltonian constraint operators Equivalence relation between spin networks defined on a priori different graphs

Holography Coarse-graining

Kinematical level

Dynamical level

Interlaced with understanding diffeo's in LQG:

Hamiltonian constraint operators

Equivalence relation between spin networks defined on a priori different graphs

Part of bulk data is physical, part is gauge: how to distinguish them?

e.g. BF theory

bulk loops are gauge

Coarse-graining - Holography

Kinematical level

Dynamical level

Interlaced with understanding diffeo's in LQG :

Hamiltonian constraint operators

Equivalence relation between spin networks defined on a priori different graphs

Part of bulk data is physical, part is gauge: how to distinguish them ?

and for gravity?

Coarse-graining - Holography

Kinematical level

Dynamical level

Interlaced with understanding diffeo's in LQG :

Hamiltonian constraint operators

Equivalence relation between spin networks defined on a priori different graphs

Part of bulk data is physical, part is gauge: how to distinguish them ?

Consider yet-to-be-defined coarse-graining procedure, with no actual loss of info, such that boundary states allow faithful rep of relevant physical bulk obs ...

This would be holography in LQG

How to Coarse-Grain Spin Networks?

How to Coarse-Grain Spin Networks?

An essential(ly) simple procedure:

« Coarse-graining by Gauge-fixing »

Allows to reduce any bounded region of a

spin network to a single vertex

Gauge-Fixing and Frame Synchronization

Let's choose a root vertex and start with one link

Use gauge-invariance at vertex v_1

 $\varphi(g_{v_0v_1}, g_{v_1v_2}, ..)$

 $=\varphi(g_{v_0v_1}h_{v_1}^{-1},h_{v_1}g_{v_1v_2},..)$

Set parameter $h_{v_1}=g_{v_0v_1}$ to gauge-fix to $ilde{g}_{v_0v_1}=g_{v_0v_1}h_{v_1}^{-1}=\mathbb{I}$

Gauge-Fixing and Frame Synchronization

Let's choose a root vertex and start with one link

Use gauge-invariance at vertex v_1

$$\varphi(g_{v_0v_1}, g_{v_1v_2}, \ldots)$$

$$=\varphi(g_{v_0v_1}h_{v_1}^{-1},h_{v_1}g_{v_1v_2},..)$$

Set parameter $h_{v_1} = g_{v_0v_1}$ to gauge-fix to $\tilde{g}_{v_0v_1} = g_{v_0v_1}h_{v_1}^{-1} = \mathbb{I}$

- Can develop gauge-fixing along tree in graph
- Set all holonomies on edges in tree to Identity
- Only remaining gauge invariance at root vertex v_0
- i.e. Synchronize the SU(2) frames along tree!

Gauge-Fixing to Loopy Vertices

So let's consider a bounded region and gauge-fix the holonomies on a max tree T on the bulk graph

Gauge-Fixing to Loopy Vertices

The Loopy Spin Network Proposal

We can re-introduce a background lattice :

(L)QG on a fixed graph

LQG on an effective background lattice

The Loopy Spin Network Proposal

We can re-introduce a background lattice :

(L)QG on a fixed graph

LQG on an effective background lattice

Fock space of little loops at each vertex, as local d.o.f.s

little loops account for fluctuations of bulk graph within each node

Possible to do effective graph-changing dynamics on a fixed lattice

like having non-zero surface charge while imposing Gauss law as in 1611.08394

Perez, Cattaneo

What should we do with a closure defect?

We can always boost it back to the closure constraint!

 $\sum_{e \ni v} X_e \neq 0 \quad \xrightarrow{\Lambda} \quad \sum_{e \ni v} \tilde{X}_e = 0$

What should we do with a closure defect?

We can always boost it back to the closure constraint!

In terms of spinors : $X^a = \langle z | \sigma^a | z
angle \in \mathbb{R}^3$

$$\sum |z_e\rangle\langle z_e| \not\propto \mathbb{I} \xrightarrow{\Lambda} \sum |\tilde{z}_e\rangle\langle \tilde{z}_e| = \Lambda \sum |z_e\rangle\langle z_e|\Lambda^{-1} \propto \mathbb{I}$$

What should we do with a closure defect?

We can always boost it back to the closure constraint!

In terms of null-vectors : $\mathbf{X}^{\mu} = (|X|, X^a) = \langle z | \sigma^{\mu} | z \rangle \in \mathbb{R}^{1,3}$

$$\sum \mathbf{X}_{e} \text{ timelike } \xrightarrow{\Lambda} \sum \widetilde{\mathbf{X}}_{e} = (\mathcal{A}, 0)$$

Rest area: $\mathcal{A} = \left| \sum_{e} \mathbf{X}_{e} \right|^{2}$ is Lorentz-invariant

What should we do with a closure defect?

We can always boost it back to the closure constraint!

- Can change the space-time embedding to compensate for the tag
- Trade intrinsic curvature for extrinsic curvature
- Essential feature of Ashtekar-Barbero connection
- Coarse-graining affects 3d geometry but also 4d embedding

We apply the same logic to the spin network links :

Non-trivial mapping of dressed link with loop to SL(2,C) holonomy!

We apply the same logic to the spin network links :

Non-trivial mapping of dressed link with loop to SL(2,C) holonomy!

We apply the same logic to the spin network links :

Non-trivial mapping of dressed link with loop to SL(2,C) holonomy!

We apply the same logic to the spin network links :

Non-trivial mapping of dressed link with loop to SL(2,C) holonomy!

And the story goes on..

dressed spin networks

q-deformed spin networks for curved vertices

- Non-abelian closure constraint $G_1G_2..G_V=\mathbb{I}$
- Use holonomies on surface as « fluxes »
- Use complex « Immirzi parameter »
- Infinite superposition of little loops ?

double spin networks or spin tubes or Drinfeld tubes

> & the « loop gravity string » or CFT bubbles

 $\kappa \neq 0$

Some new rich structures for LQG to explore ...

Project spin network data on boundary surfaces... Coarse-graining flow from bulk state to surface state ?

Holographic grains?

... Bubble Networks?

Some new rich structures for LQG to explore ...

Holo-grains ... or Holo-bubbles ? Bulk locality from boundary non-locality ?

Coarse-graining bubble networks

Implement holography by coarse-graining ?

Let's Holo-Grain them!

Pefine CFT on bubbles

Bubble-Merging algebra as diffeo's ?

Coarse-graining inv as diffeo's ? TQFT -> CFT

and how to glue the bubble CFTs ?

Coarse-graining flow from surface state to surface state ?

Deform the bubbles or diffeo the bubbles ?

Diving into

the bubbles

Thank you for your attention !

