Problems on General Relativity: 9

December 11, 2021

Problem 1. Consider the Schwarzschild metric tensor

$$g = -\left(1 - \frac{2M}{r}\right)dt^2 + \frac{dr^2}{1 - \frac{2M}{r}} + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$
(1)

for $r > r_s$ and a timelike geodesic $\gamma(\tau) = (t(\tau), r, \frac{\pi}{2}, \phi(\tau))$, where τ is the proper time parameter of a particle moving along the curve. Calculate:

- 1. the length of the orbit as a function of r and M.
- 2. the total energy relative to a static observer at infinity per unit mass, that is

$$E := -\dot{\gamma}_a T^a, \quad T := \partial_t, \tag{2}$$

as a function of r and M.

- 3. the proper time $\Delta \tau$ of a segment of the curve as a function of r, M and Δt (the time of a distant static observer)
- 4. the time for one lap
- 5. the value of E at the last stable orbit.
- 6. the value of E at the last (in a sense) unstable orbit
- 7. remember "Interstellar"? ...

Problem 2. In the same spacetime consider a null geodesic $\gamma(\tau) = (t(\tau), r(\tau), \frac{\pi}{2}, \phi(\tau))$.

1. Derive the equation

$$\frac{1}{2}\dot{r}^2 + \frac{L^2}{2r^3}(r - 2M) = \frac{1}{2}E^2, \qquad L := \dot{\gamma}_a \Phi^a, \quad \Phi := \partial_\phi.$$
(3)

- 2. find the maximum $r_{\rm ph}$ of V, and its value $V(r_{\rm ph})$. Does $r_{\rm ph}$ correspond to the ray of light going around the center of the space in a circle?
- 3. calculate the minimum value of the apparent impact parameter $\frac{E}{L}$ required to surmount the top of the effective potential.
- 4. derive $\frac{d\phi}{dr}$ given M and $\frac{E}{L}$.

Problem 3* optional. Suppose that from a distance the r = 2M sphere looks like a black ball against a brighter sky. How does its appearance change as we approach it. Why does the sky at a certain distance become almost a dot behind the back of the person looking towards the sphere?