Problems on General Relativity: 4

October 28, 2021

Problem 1. Consider a cylinder $\mathbb{R} \times S_3$ embedded in 5-dimensional Minkowski spacetime \mathbb{M}_5 ,

$$\Phi : \mathbb{R} \times S_3 \to \mathbb{M}_5. \tag{1}$$

The Minkowski spacetime is endowed with a metric tensor

$$g = -(dZ^{0})^{2} + (dZ^{1})^{2} + \dots + (dZ^{4})^{2},$$
(2)

where $(Z^0,...,Z^4)$ are coordinates. The embedding is defined as follows

$$\Phi^{0}(t,\chi,\theta,\varphi) \equiv Z^{0}(t,\chi,\theta,\varphi) = a \sinh t \tag{3}$$

$$\Phi^{1}(t,\chi,\theta,\varphi) \equiv Z^{1}(t,\chi,\theta,\varphi) = a\cosh t\cos\chi \tag{4}$$

$$\Phi^{2}(t,\chi,\theta,\varphi) \equiv Z^{2}(t,\chi,\theta,\varphi) = a\cosh t \sin \chi \cos \theta \tag{5}$$

$$\Phi^{3}(t,\chi,\theta,\varphi) \equiv Z^{3}(t,\chi,\theta,\varphi) = a\cosh t \sin \chi \sin \theta \cos \varphi \tag{6}$$

$$\Phi^{4}(t,\chi,\theta,\varphi) \equiv Z^{4}(t,\chi,\theta,\varphi) = a\cosh t \sin \chi \sin \theta \sin \varphi. \tag{7}$$

(ii) Derive the pull back $\Phi^* g$.

Problem 2. Consider \mathbb{R}^4 embedded in 5-dimensional Minkowski spacetime \mathbb{M}_5 ,

$$\Phi : \mathbb{R}^4 \to \mathbb{M}_5 \tag{8}$$

introduced in Problem 1. The embedding is defined as follows

$$\Phi^{0}(\eta, x, y, z) \equiv Z^{0}(\eta, x, y, z) = \frac{a^{2} + s}{2\eta}$$
(9)

$$\Phi^{1}(\eta, x, y, z) \equiv Z^{1}(\eta, x, y, z) = \frac{a^{2} - s}{2\eta}$$
(10)

$$\Phi^{2}(\eta, x, y, z) \equiv Z^{2}(\eta, x, y, z) = \frac{ax}{\eta}$$
(11)

$$\Phi^{3}(\eta, x, y, z) \equiv Z^{3}(\eta, x, y, z) = \frac{ay}{\eta}$$
(12)

$$\Phi^{4}(\eta, x, y, z) \equiv Z^{4}(\eta, x, y, z) = \frac{az}{\eta}$$
(13)

$$s := -\eta^2 + x^2 + y^2 + z^2 \tag{14}$$

(i) Show, that the image of Φ is contained in the hyperboloid

$$-(Z^{0})^{2} + (Z^{1})^{2} + (Z^{2})^{2} + (Z^{3})^{2} + (Z^{4})^{2} = a^{2}$$
(15)

(ii) Derive the pull back Φ^*g .

Problem 3* optional. The isometries of (M_5, g) are believed to be the flows of the linear combinations of the following 15 vector fields

$$\xi = \partial_{Z^{0}}, \partial_{Z^{1}}, \partial_{Z^{2}}, \partial_{Z^{3}}, \partial_{Z^{4}},
Z^{1}\partial_{Z^{0}} + Z^{0}\partial_{Z^{1}}, ..., Z^{4}\partial_{Z^{0}} + Z^{0}\partial_{Z^{4}}
Z^{1}\partial_{Z^{2}} - Z^{2}\partial_{Z^{1}}, ..., Z^{4}\partial_{Z^{3}} - Z^{3}\partial_{Z^{4}}$$
(16)

(i) Show, that indeed

$$\mathcal{L}_{\varepsilon} g = 0.$$

- (ii) Find those among the vectors (16) which are tangent to the hyperboloid (15).
- (iii) What is a conclusion on the dimension of the isometry group of the hyperboloid (15)?