Exam on General Relativity

February 5, 2021

In the problems 1 - 12 consider vacuum spacetime around spherically symmetric black hole at the presence of a positive cosmological constant Λ , characterised by the Kottler metric tensor:

$$g_{\rm SdS} = -\left(1 - \frac{r_S}{r} - \frac{r^2}{\ell^2}\right)dt^2 + \frac{dr^2}{1 - \frac{r_S}{r} - \frac{r^2}{\ell^2}} + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right), \qquad \ell := \sqrt{\frac{3}{\Lambda}}.$$
 (1)

- 1. What values r_b and r_c of the coordinate r correspond to black hole, and cosmological horizon, respectively? **Can you find exact explicit expressions? (It is not necessary to solve the remaining problems). For what values of r the vector field ∂_r is timelike?
- 2. Arrange the four values r_b, r_c, r_s and ℓ in ascending order.
- 3. Calculate acceleration of an observer in rest (that is, such that $r, \theta, \phi = \text{const}$). Is the acceleration directed toward or outward the black hole horizon?
- 4. Find a value $r = r_f$ such that the acceleration of the corresponding observer vanishes. What does it mean for the observer's world line?
- 5. An observer in rest at $r = r_1$ emits a ray of light to an observer at rest at $r_2 > r_1$. What is the relationship between light frequencies according to observers? Does the second observer see the light "red shifted" or "blue shifted"?
- 6. Find an extension of the spacetime that contains the black hole horizon to the future of the region $r_b < r < \ell$. In order to do it, replace the coordinate t by a suitable function u.

Hint: consider

$$du := dt \pm \frac{dr}{1 - \frac{r_S}{r} - \frac{\ell^2}{r^2}}$$

and carefully choose either + or -.

7. Find an extension of the spacetime that contains the cosmological horizon to the future of the region $r_b < r < \ell$. In order to do it, replace the coordinate t by a suitable function v.

Hint: consider

$$dw := dt \pm \frac{dr}{1 - \frac{r_S}{r} - \frac{\ell^2}{r^2}}$$

and carefully choose either - or +.

8. * Show that, the function r decreases / increases for every curve future directed, in the region $r < r_b / r > \ell$ of the extension defined in 5 / 6.

Hint: notice, that in the coordinates $(u/v, r, \theta, \phi)$, the vector field ∂_r is null, and carefully selected factor of \pm makes it future directed, consider the sign of $\frac{dx^{\mu}}{d\tau}(\partial_r)_{\mu}$.

- 9. * Consider the extensions of the vector field ∂_t to the black hole horizon and the cosmological horizon, respectively, of item 5 and 6. Calculate the corresponding surface gravities.
- 10. Consider a timelike or null geodesic $\tau \mapsto (t(\tau), r(\tau), \theta_0 = \frac{\pi}{2}, \phi_0)$. Derive effective potential $V(r; J, \Lambda)$ such that

$$\frac{1}{2}\left(\frac{dr}{d\tau}\right)^2 + V(r;J,\Lambda) = \frac{1}{2}E^2 \quad \text{where} \quad J = \frac{dx^\mu}{d\tau}(\partial_\phi)_\mu, \quad E = -\frac{dx^\mu}{d\tau}(\partial_t)_\mu \tag{2}$$

11. Find unstable circular orbit for a point particle moving at speed of light.

12. ** Assuming that $\ell >> r_S$ and J is given, derive radius of circular orbit to the first leading order in $\frac{r_S}{\ell}$. Find the minimal stable circular orbit, and the minimal unstable circular orbit, in that approximation. Hint: if $R(\Lambda, J)$ is the exact value of radius depending on Λ , that is

$$\partial_r V(R(\Lambda, J), J; \Lambda) = 0$$

then

$$\frac{d}{d\Lambda}\partial_r V(R(\Lambda,J),J;\Lambda)=0.$$

13. Consider spacetime

$$g = -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2)$$

Calculate the Kretschmann scalar

$$R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}$$

and derive a condition on a(t) at t_0 such that

$$a(t_0) = 0,$$

that ensures the scalar is still finite.

14. Consider a timelike geodesic

$$\tau \mapsto (x^{\mu}(\tau)) = (t(\tau), x(\tau), 0, 0)$$

parametrised by proper time τ . Derive $t(\tau)$ and $x(\tau)$ assuming a(t) is given as well as $t(\tau_0), x(\tau_0)$. Hint: What about $\frac{dx^{\mu}}{d\tau}(\partial_x)_{\mu}$?

15. Consider spacetime endowed with the metric tensor

$$-d\tau^2 + a^2(\tau)(d\psi^2 + \operatorname{sh}^2\psi(d\theta^2 + \sin^2\theta d\phi))$$

Solve The Friedmann equations for

$$\rho = -P.$$

Hint: See Lecture 15

- 16. *In the previous problem, consider the family of comoving observers x, y, z = const. Who of them can communicate with the observer (x, y, z) = (0, 0, 0) in the period $\tau \in (0, \tau_0)$.
- 17. ** Prove that for every metric tensor g in 4-dimensional spacetime, locally there exist coordinates (t, x, y, z) such that

$$g = -dt^2 + g_{ab}(t, x, y, z)dx^a dx^b, \qquad x^a = x, y, z.$$

Hint: Show that

$$(\nabla_X X = 0, g(X, X) = -1, \mathcal{L}_X Y = 0) \Rightarrow X^{\mu} \partial_{\mu}(g(X, Y)) = 0$$