Problems on General Relativity: 3

November 26, 2020

Problem 1. Consider two stereographic projections,

$$\mathbb{R}^3 \supset \{(x',y',z'): x'^2+y'^2+z'^2=1\} \to \mathbb{R}^2$$

 $(x',y',z')\mapsto (x,y)$ and $(x',y',z')\mapsto (x",y")$ defined as follows:

$$(x,y) = \left(\frac{x'}{1-z'}, \frac{y'}{1-z'}\right) \tag{1}$$

$$(x^{"}, y^{"}) = \left(\frac{x'}{1+z'}, \frac{y'}{1+z'}\right).$$
⁽²⁾

Derive the map

$$\psi: (x^{"}, y^{"}) \mapsto (x, y) \tag{3}$$

and specify its domain.

Problem 2. Using the map (3) calculate the pullback

$$g$$
" := $\psi^* g$

of the metric tensor

$$g = \frac{4}{(1+x^2+y^2)^2}(dx^2+dy^2)$$

obtained by the pull back of the flat metric in \mathbb{R}^3 with the inverse map $\mathbb{R}^2 \to \mathbb{R}^3$ to (1). Can you explain the result?

Problem 3. Consider a general 1-form $\omega_x(x, y)dx + \omega_y(x, y)dx$ and its pullback $\omega^{"} := \psi^* \omega$. Formulate necessary and sufficient conditions satisfied by the functions ω_x, ω_y , for the functions $\omega^{"}_{x"}(x^{"}, y^{"})$ and $\omega^{"}_{y"}(x^{"}, y^{"})$ to be well defined at $(x^{"}, y^{"}) = (0, 0)$.