BULLETIN DE L’ACADEMIE
POLONAISE DES SCIENCES
Série des sci. math.,, astr.
et phys. — Vol. VI, No. 6 1958

THEORETICAL PHYSICS

Boundary Conditions at Infinity for Physical Theories

by
A . TRAUTMAN

Presented by L, INFELD on April 12, 1958

1. The Cauchy problem is the most natural for hyperbolic partial
differential equations, When dealing with physical problems, we are,
however, often interested in solutions of field equations with given sources
when nothing is known about initial conditions. A whole set of fields
corresponds, in general, to given sources and, in order to arrive at a unique
solution of the problem, we must specify some additional condition.
For linear field equations this condition may consist in prescribing the
form of Green’s function (e. g. retarded, advanced, ete.). If we investigate
the field in the whole (unbounded) space-time we can ensure uniqueness
by specifying some appropriate boundary conditions at spatial infinity.
The latter approach has the advantage of being applicable to non-linear
theories, such as the theory of general relativity. These boundary con-
ditions, first formulated for a periodiec scalar field by Sommerfeld [1],
have a definite physical meaning. E, g., the “Ausstrahlungsbedingung”
of Sommerfeld means that the system can lose its energy in the form
of radiation and that no waves are falling on the system from the exterior,

The purpose of this paper is to formulate boundary conditions for
scalar and Maxwell theories in a form which exhibits their physical
meaning and is proper to a generalization for the gravitational case.

2. Let us first take the scalar wave equation

. o
(1) Ap— 75 = —4me,

and assume o(7, t) to be a regular funection vanishing outside a bounded
3-dimensional region V. The retarded solution of (2) ean be written in
the form
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From (2) we obtain the following asymptotic values of ¢ and its de-
rivatives:

p=r [o(F',i—R)AV'+ O(r2),
V -

(3)
@o= k! f@)a(-i",t—R)dV'-i-O(""—z) *)s
14
where
(4) ke = (1,n%), nf=adr

is a null vector field,
Now, we can formulate the following boundary conditions to be
imposed on solutions of (1):

(8) p=0();

(6) there ewisis a function = O0(r™) such that ¢,= yk,+ O(r2), where

k, s given by (4).

We see from Egs. (3) that every retarded solution of (1) fulfills (5)
and (6). Conversely, if condition (6) is fulfilled, then ¢ satisfies Sommer-
feld’s radiation condition

lim rk*p, = lm 7 (dp/dt -+ dp/or) = 0.
P00 r—>00

Thus, the wave equation with a spatially bounded source has always
one, and only one, solution fulfilling our conditions (5) and (6).

If we replace (4) by k°= (1, —n®) we obtain the conditions which
characterize advanced solutions of (1),

Let us introduce the energy-momentum density tensor of the field ¢:

T, =L8,—9,0Ldp,, where L= —n%p,p.8x.

Taking into account the asymptotic expressions of ¢, we have L = O (%)
and
(7) 4n T, = v?kk, +0(r3).

The asymptotic form of T, resembles the energy-momentum tensor

of a perfect fluid with vanishing rest mass. Further, we can obtain from (7)
the time rate of radiated energy and momentum:

43‘5W‘u = 4xn { T,f-ns(lS = { "/Jzky as .
S 8

*) @4 — O(r%) means that there exists a constant I such that, for a sufficiently
large 7, we have |P4| < Mr#k; Greek indices run from 0 to 3, Latin ones — from 1 to 3;
a° = 1, (&, 2%, %) = 7; a comma followed by an index denotes differentiation. Bumma-
tion convention will be used throughout. Indices will be raised by means of the Ga-
lilean metric tensor 28 (5 = 1, 5io = 0, nit = — i), Square brackets stand for alter-
nation, e, g., Pjurel = Puvp +Prop +Pouv— Pgru—Prug—Prugr -
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The integrals are to-be taken over the surface of a sphere “at in-
finity”’, The condition (6) with Eg. (4) ensures that Wy 0.

8. The situation is somewhat more complicated in electrodynamics
because of the gauge-invariance. Maxwell’s equations

(8) fm’,” = _477‘7.”1 f,w = A—[v,,u]
can be reduced to four wave equations

9244.” 15
(9) AA#— o — dje

if one imposes on potentials the Lorentz condition

(10) Aoy =R

To A», satisfying Eqs. (9) and (10), we can apply conditions (5), (6).
It would perhaps be more satisfactory if we formulated the boundary
conditions in a way involving only the field f,. However, our actual
conditions will be more suited for a straightforward generalization to
Einstein’s theory. The current j* now satisfies the same regularity and
boundness conditions as ¢ in the former case.

We formulate the boundary conditions as follows: there exists a po-
tential A" satisfying

(11) 4"=0(r~)
(12) and four functions B,= 0(r7) such that A4,,= Bk, +0(r?), and
(13) B,ke=0(r7?).

It must be noted that there are many functions A4, which satisfy
Maxwell’s Eqs. (8) and conditions (11)-(13), but all these potentials re-
present the same electromagnetic field. ‘

From Egs. (12), (13) we obtain the asymptotic form of the field:

(14) fuw=k,B,—k,B,, T,Br=0%)
or, in veetor notation, '
B~ @xm)xh, HoBx#, B=(B%B), KF=(@1,%).

Eqgs. (14) represent a system of ‘“gauge-invariant” boundary conditions,
The electromagnetic field has asymptotically the form of a plane wave,
For the energy-momentum density tensor

4nTy = ¢ WuvaOfga—fygfve
we obtain the expression

4nT,, = —B,B%,k, +0(r?).

%) 'We shall sometimes write @ = 0 instead of ® = O (%),
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k, being a null vector, it follows from (13) that B,B°< 0 for sufficiently
large r. :

The total charge e contained in the field can be calculated by means
of Gauss’ law

dme = { fonrds .
i S

Though f* contains terms going as 1/r, nevertheless e is finite by
virtue of (14).
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The aim of this paper is to discuss the connection between the pro-
blem of gravitational radiation and the boundary conditions at infinity.
We shall deal with the concept of energy and momentum in Einstein’s
general relativity and propose a preseription for computing the total
radiated energy. A connection between our radiation conditions and the
definitions of gravitational radiation by Pirani and Lichnerowicz is shown
in section 5. '

1. In physics we are ordinarily interested in conservation laws which
have an integral character. A classical conserved quantity is a functional
flo] depending on a space-like hypersurface o, A conservation law is
a statement that, by virtue of the equations of motion, f, in fact, does
not depend on o, As is known, in general relativity the energy-momen-
tum tensor of matter I,, does not by itself lead to an integral comserva-
‘tion law. However, if we introduce an energy-momentum pseundotensor
of the gravitational field t;= (6,0 + g% 90 /9ge,) /2%, then the sum
., +t, is divergenceless by virtue of Einstein’s equations *). Binstein’s
tensor density ®', = V—g(R,— 36, R) can namely be written in the form

(1) Gjﬂw = ”(t; +uuh,l) 9

where the “superpotentials” ' are given in [1
I L

Alz — A
ggﬂ.‘t = —'2%11” °

) 20, =V —g "84

*) We shall use the notations of the preceding paper; gu» Will denote the metrie
tensor of the Riemannian space-time ¥,. Gothic letters denote tensor derisities and
also “pseudoquantities” such as the superpotentials. '
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